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Mr. Armin Warda supports Red Hat's Financial Services customers and partners in
the adoption of Red Hat technology, particularly in regards to Operational
Efficiency, Security & Compliance as well as on their journey to Hybrid Cloud.
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He is currently exploring the impact of European regulations and initiatives on the
financial services industry and their IT providers, such as e.g. the Digital Operational Armin Warda
Resiliency Act (EU-DORA) and the Artificial Intelligence Act (EU-AIA). Among his | EMEA FSI Chief Technologist
areas of interest are also Environment, Social & Governance (ESG) aspects of IT, awarda@redhat.com
Trustworthy Al, and the potential transformation of the Payment Industry through :
the introduction of Central Bank Digital Currencies (CBDCs, such as the Digital-€),
as currently being discussed by central banks around the world, the EU and G7.

Prior to his current role he was working for 22 years at Postbank Systems as a
Senior IT Architect for Postbank and Deutsche Bank. Armin holds a master degree
in Computer Science from the TU Dortmund and also studied at the University
College Dublin.




Why Al now?

Why is NOW a good time for companies to invest in Al?

Enterprises are taking the leap

Al technologies are Companies can realize Organizations are better
becoming more the value from prepared to manage,
accessible and Al-enabled applications transform and use their

affordable for businesses and Al-support ever-increasing data

of all sizes



Evolution of Al

Al has undergone significant evolution

The evolution of Data-driven Al: from Business Intelligence to Generative Al

Business Analysis &
Intelligence

—

Collecting data

Storing & moving data
Structured data
Transforming data (ETL)

Data Warehouses

Advanced Analytics &
Predictive Al

e Data science techniques
e Unstructured data
e Predictive analytics

o Real-time decision
making

Big Data

Foundation Models &
Al-enabled apps

e Deep learning
techniques

e Model experimentation
e Model tuning
e Prompt engineering

Generative Al

Generative Al &
Fact Databases

e Retrieval Augmented
Generation (RAG)

e Generated content
pointing to fact
database

e Also filter hallucinations

RAG, Guardrails

Today, practical Al is Data-driven

Predictive Al runs businesses
today

Foundation models provide a
shortcut for realizing
the value of Generative Al

Models are embedded in
and guarded by applications



Why Al how in banking?

Generative Al in banking has a huge potential for increased productivity
McKinsey Insights: Capturing the full value of generative Al in banking

Value created by Al at stake by segment and function,' $ billion
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https://www.mckinsey.com/industries/financial-services/our-insights/capturing-the-full-value-of-generative-ai-in-banking

Among industry sectors, banking is expected
to have one of the largest opportunities,
largely from increased productivity

e The economic impact will likely benefit all
banking segments and functions, with the
greatest absolute gains through Generative Al
in the corporate and retail sectors with $56
billion and $54 billion, respectively

e No surprise: software engineering ® LLMs

e Risk and legal get largest value from Al,

but that's mostly traditional Al
& RedHat



Types of Al

Predictive Al vs. Generative Al

Most common types of Al for business applications

Predictive Al Generative Al

Predicts or classifies outcomes with models trained on Generates new content with models trained on
use-case specific data sources - vast amounts of data from many sources
: | am preparing for a behavioral interview for a marketing role. Can you generate some

sample questions about my ability to create and execute successful marketing campaigns? |
have experience conducting market research, developing marketing strategies, and

- “ S - analyzing the results of campaigns. Can you also include questions about my creativity and
CO r O 79 L : 2 ability to come up with new ideas?"
cor 0. 86 :

Sure! Here are some sample behavioral interview questions about your ability to create and

execute successful marketing campaigns:

1. Can you describe a time when you had to develop and implementv

from start to finish? What was the campaign for, and what were th™
2. How do you go about conducting market research when planning

campaign? What tools and techniques do you use to gather inforn 3
3. How do you determine which marketing channels will be most eff .

S

Can you give an example of a campaign where you had to make tt 4
AT N

4. How do you measure the success of a marketing campaign? What \
and how do you analyze the data to inform future campaigns? \i\-??w,

5. Can you describe a time when you had to be creative in order to s i -, "
challenge during a marketing campaign? How did your solution in &

success?

https://www.Ietsdiveio/blog/generative:—ai—vs—predicti\/e—ai—a\I—you—need—to—know#:~:text=Generative%ZOAI
%20is%20primarily%20focused,events%20based%200n%20historical%20data.



What type of Al drives businesses today?

What is it for?

Penetration

Maturity

Predictive Al vs. Generative Al

Most common types of Al for business applications

Predictive Al

Predicts or classifies outcomes with models trained on

use-case specific data sources
90%

“VISIBILITY

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger TIME

Y

Generative Al

Generates new content with models trained on

vast amounts of data from many sources
10%

VISIBILITY

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger

Y




Use-cases

Al Use-Cases in Financial Services

5 %

Fraud Management Hyper-Personalization Operational Efficiency Risk Analytics
Anomaly detection, Improve customer and Branch Location & Staff Automated Underwriting
Countering financial crime employee experience, Planning, ATM Cash on Decisions, Mortgage
such as money laundering, Customer Next Best Offer, Hand, Call Routing, Prepayment Analytics,
terror financing, tax evasion Chatbots, Onboarding Workflow Automation Credit Scoring

JPMorganChase )

iISBANK [DIEITE FriendliAl %

RBC FRANCE

& RedHat



Rage against the machine?

B @andol White Self-driving cars

© This article is more than 3 months old

Robotaxis honk at * \ Cruise recalls all self-driving cars after grisly accident and
each other ™ ™ w» ; California ban

All 950 of the General Motors subsidiary’s autonomous cars will be taken off roads for a
software update

Crowd burns Waymo

> M O oor/os

Crowd burns Waymo self-driving vehicle in San H

& CNBC Television &
cr:gc 2.64M subscribers

Associated Press

Wed 8 Nov 2023 19.17 CET

ttps://www.youtube.com/watch?v=9kn9yu Cgfc
ttps://www.bbc.com/news/videos c17 verg990



https://www.youtube.com/watch?v=9kn9yu_Cgfc
https://www.bbc.com/news/videos/c17gqverg99o
https://www.theguardian.com/technology/2023/nov/08/cruise-recall-self-driving-cars-gm
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* X %

Reqgulating Al: The EU-AI Act (March 13) Lo

* 4 *

Unregulated, irresponsible or abusive use of Al could lead to negative consequences for individuals or the society,
create public opposition and hinder Al innovation in the EU.

The EU is committed to strive for a balanced approach to Al

Human Oversight,

. Risk Management, Auditability.

------------------------------------------------------------------------

There are some exceptions
for Al systems released
under Open Source licenses.

they fail or are misused, e.qg. if used in law
enforcement or recruiting.

Minimal Risk

All other Al systems, e.g. a spam filter,
which can be deployed without
additional restrictions.

Image: https://www.trail-ml.com/blog/eu-ai-act-how-risk-is-classified

-> accurateness
e Lawful
-> transparency .
. : banned:
e Ethical > faimess
Rob -> no (unintended) bias . .
° obust > security : Unacceptable Risk
....................................................................... . @) tionestlevelofisk prohibited nthe EU.
o . . . Includes Al systems using e.g. subliminal .
EU Al Act Requirements: High Risk manipulation or general social scoring.
Explainability, Documentation,
P &D G Most regulated Al systems, as thesehave . = T 00000 i sasasasss e
rocess ata Governance, the potential to cause significant harm if

Limited Risk

Includes Al systems with a risk of
manipulation or deceit, e.g. chatbots or
emotion recognition systems. Humans
must be informed about their interaction
with the Al.



Openwashing?

:E OpenwaShmg MA 1language v

Article  Talk Tools v

From Wikipedia, the free encyclopedia

Openwashing or open washing (a compound word modeled on “whitewash”
and derived from “greenwashing”) is a term to describe presenting something
as open, when it is not actually open. In the context of openwashing, ‘open’
refers to transparency, access to information, participation, and knowledge
sharing.!"!

Usage (con)

The term was coined by Michelle Thorne, an Internet and climate policy scholar,

Rethinking open source generative Al:
open-washing and the EU Al Act

Andreas Liesenfeld
Mark Dingemanse*
andreas. liesenfeld@ru.nl
mark.dingemanse@ru.nl
Centre for Language Studies, Radboud University
Nijmegen, The Netherlands

ABSTRACT
The past year has seen a steep rise in generative Al systems that

claim to be open. But how open are they really? The question of
what counts as open source in generative Al is poised to take on

particular importance in light of the upcoming EU Al Act that reg-

ulates open source systems differently, creating an urgent need

n

https:/en.wikipedia.org/wiki/Openwashing
https://dl.acm.org/doi/pdf/10.1145/3630106.3659005

for practical openness assessment. Here we use an evidence-based
framework that distinguishes 14 dimensions of openness, from
training datasets to scientific and technical documentation and
from licensing to access methods. Surveying over 45 generative Al
systems (both text and text-to-image), we find that while the term
open source is widely used. many models are ‘open weight' at best
and many providers seek to evade scientific, legal and regulatory
scrutiny by withholding information on training and fine-tuning

Janetro, Brazil. ACM, New York, NY, USA. 14 pages. https://doLorg/10.1145/
3630106.3659005

1 INTRODUCTION

Open generative Al systems are on the rise, with small players and
academic initiatives leading the way in open innovation and sci-
entific documentation [20, 32, 61) and several larger corporations
joining the fray by releasing models billed as ‘open’. But there are
three critical challenges to openness in the domain of generative
Al systems. The first is that openness is not a binary feature: to-
day's transformer-based system architectures and their training
procedures are complex, and they can only be classified into open
or closed at the price of severe information loss. Secondly, some

& RedHat


https://en.wikipedia.org/wiki/Openwashing
https://dl.acm.org/doi/pdf/10.1145/3630106.3659005

What are Open Source Al models?

Open Source Software

Open Source Al/ML Models ﬂ

Open Source Hardware

https://en.wikipedia.org/wiki/List of open-source hardware projects

222222


https://en.wikipedia.org/wiki/List_of_open-source_hardware_projects

How open are “Open Source” Models?

Open Source Software Today’s “Open Source” LLMs

Frequent releases Monolithic, irregular releases

(sometimes nightly) (e.g. ly between LLaMA versions)

Incremental contributions Monolithic development

Feature roadmaps “Emergent behaviour”, no one knows what's coming
Community contributions Largely single-party development

(pull requests) (expensive collection of training data)
Contributions from many Contributions to model, in the form of fine-tuning,
contributors can be merged are mutually incompatible between contributors,
and reconciled leading to fragmentation in model families

Almost any developer can, High barrier to contribution

in principle, contribute (clusters, GPUs for fine-tuning)
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What are weights?
Are weights special?

Weights are code.”

Model development

Untrained model

without weights

Weights for the model

training data &
data preparation

Pre-trained model

with weights

Instruction Set Architecture (ISA), such as RISC-V, P-Code Machine, Java Virtual Machine, WebAssembly

Software development

Instruction Set
Architecture

Obiject code

Source code

Deployable
Application



An open source community project for GenAl model development

= O instructlab

() Overview [J] Repositories 7 0)) Discussions [ Projects 1 & Packages A People 21

https://qgithub.com/instructlab

(@» InstructLab

README . md

Welcome to the 4# InstructLab Project

4&} Instruct
Lab

—

InstructLab 4# uses a novel synthetic data-based alignment tuning method for Large Language Models (LLMs.) The "lab" in
InstructLab " stands for Large-Scale Alignment for ChatBots [1].

[1] Shivchander Sudalairaj* Abhishek Bhandwaldar* Aldo Pareja* Kai Xu, David D. Cox, Akash Srivastava* "LAB: Large-Scale
Alignment for ChatBots", arXiv preprint arXiv: 2403.01081, 2024. (* denotes equal contributions)

Why InstructLab

There are many projects rapidly embracing and extending permissively licensed Al models, but they are faced with three main
challenges:

« Contribution to the models themselves is not possible directly. They show up as forks, which forces consumers to choose a
“best-fit” model that isn't easily extensible, and the forks are expensive for model creators to maintain.

« The ability to contribute ideas is limited by a lack of Al/ML expertise. One has to learn how to fork, train, and refine models in
order to see their idea move forward. This is a high barrier to entry.

¢ There is no direct community governance or best practice around review, curation, and distribution of forked models.

Q Type (/) to search i

Unfollow

Top discussions this past month

Discussions are for sharing announcements,
creating conversation in your community,
answering questions, and more.

Start a new discussion
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View all
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® Python Shell @ TypeScript
® Jupyter Notebook

Report abuse
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Update confidential designator here

Rapid open source innovation for Al
InstructlLab

() ()]
Model version N ()] é_j

"‘ Podman @ RedHat

oooooo
oooooo
oooooo

Triaging Tool

W Allab RHEL Al
Developers use CLI, Podman, VS Code, & Workflow
. etc. to develop, test and submit I B [ PRs are reviewed
Periodic Model skills & knowledge as pull requests (PRs) for quality and a
Releases HE N subset is chosen
I B [ for this round
InstructLab Backend
Model version N+1 &——) % - Y — @@ -
!
= o <—<—@@<—
RedHat
OpenShift Al
7 Triaged PRs are used to run the backend flow & RedHat
edHa

(synthetic data generation + multi-phase training)



Rapid open source innovation for Al Update confidential designator here

decide if PRs contain

proprietary IP or can be keep proprietary IP private
shared in the community

I R
InstructLab ' I: Triaging Tool
= =] -e submit to downstream I & Workflaw

benefit from and contribute to
collaboration in communities

1
1
I
(Qj (Q) ooo :
;j é g E E submit to m —> [ B [ PRs are reviewed |
Model version N @ ooo Upstream 1 for quality and a
-~ - P — I EEE subset is chosen !
N7 ’Afon ‘S?ét'?'. Triaging Tool ] B @ [ for this round :
O o Developers use CLI, Podman, VS Code, & Workflow 1 I
O _etc.to develop, test and submit B B W PRs are reviewed :: |
Periodic Model skills & knowledge as pull requests (PRs) —— for quality and a 0 I
Releases subset is chosen I 1
B B [ for this round I: |
I
InstructlLab Backend :: InstructlLab Backend |
" . !
Model version N+1 11 Nﬁ“‘—‘) A b ,‘ - = ’Hw :
1 | e — [l — (—j :
1 . H o 4 |
1 : private model I
| bt g:‘:rtlsa:ift Al | 1 bt Ro:g:sarfift Al :
Triaged PRs are used to run the backend flow :I Triaged PRs are used to run the backend flow I
(synthetic data generation + multi-phase training) I: (synthetic data generation + multi-phase training) I
________________________________________________________________________________ 4
Skills and knowledge that can be shared with the community are contributed upstream. These come Proprietary skills and knowledge, that shall not be shared, are not
back for free with the next version of the model, thus reducing the resources required for in-house submitted upstream but retained in-house. These have to be
fine-tuning of the private model, and potentially improved by other collaborators. re-added to each new version of the upstream base model.

‘ RedHat
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Red Hat open source Al platforms

1

&

&3 InstructLab & RedHat

P Enterprise Linux Al
STEP1 STEP 2

Learn and experiment via limited Production-grade model training using
desktop-scale training method (glora) full synthetic data generation, teacher
on small datasets. and critic models. Tooling focused on
Podman Desktop integration. scriptable primitives.

’
Laptop / desktop mE Server / VM
[ [

qlora: https://arxiv.org/abs/2305.14314 https://github.com/artidoro/glora

2
(G
2

‘ Red Hat

OpenShift Al

STEP3

Production-grade model training as in
RHEL Al, using full power of
Kubernetes scaling, automation, and
MLOps services.


https://arxiv.org/html/2403.01081v1
https://github.com/artidoro/qlora

Summary

Al/ML benefits businesses But there are challenges

Al-powered intelligent software People, process, compliance and

applications help make better and technology challenges can delay
faster predictions and achieve deployments. This can have a
key business goals. negative business impact and

Open Source Al is winning. introduce new risks.

20

& RedHat

Red Hat can help

We have the capabilities and
partnerships to help speed up
Al/ML initiatives, allowing faster

delivery of intelligent software

applications, and to control the risks.

& RedHat
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