
Open Source
Guide

Practical recommendations for
Open Source Software
Version 3.2

2

In the beginning,
all software was free.
Georg C. F. Greve

3

Publisher

Bitkom e. V.

Albrechtstraße 10 | 10117 Berlin

Contact person

Dr. Frank Termer | Bereichsleiter Software

T 030 27576-232 | f.termer@bitkom.org

Bitkom Working Group

AK Open Source

Project management

Sebastian Hetze | Red Hat GmbH

Design

Anna Stolz

Picture credits

© kkolis – stock.adobe.com

Copyright

Bitkom 2024

Legal information on the use of the guide

This guide is licensed under the Creative Commons Attribution. No Derivatives 3.0

Germany (CC BY-ND 3.0 DE). This license allows anyone to reproduce, distribute and

make publicly available the content published here, provided that it is not modified,

whether for commercial or non-commercial purposes. The prerequisite for this is the

naming of Bitkom as the publisher and the provision of a complete Internet address

for the license. Details of the license in a generally understandable form can be found

on the ↗ Creative Commons website. The full license text is available under ↗ Creati-

ve Commons Legal Code.

This publication constitutes general non-binding information. The contents reflect the

view within Bitkom at the time of publication and refer exclusively to German law.

Although the information has been prepared with the greatest possible care, there is

no claim to factual correctness, completeness and/or up-to-dateness; in particular,

this publication cannot take into account the specific circumstances of individual cases.

It is merely a translation from German. In this respect, no conclusions can be drawn

as to the classification of facts outside the German legal area. Any use thereof is there-

fore the reader's own responsibility.

https://creativecommons.org/licenses/by-nd/3.0/de/deed.en
https://creativecommons.org/licenses/by-nd/3.0/de/legalcode
https://creativecommons.org/licenses/by-nd/3.0/de/legalcode

4

1
2

3

Foreword 8

Acknowledgement 9

Changelog 10

Introduction | Preface 11

Info & Basics 13

2.1 Relevance of Open Source Software 14

2.2 Concept and Definition of Open Source Software 16

2.3 Opportunities and challenges 19

2.3.1 Opportunities 19

2.3.2 Challenges 22

Benefits of Open Source Software 27

3.1 Strategy examples for the use of Open Source Software 28

3.1.1 General rejection 28

3.1.2 No open source in own products 29

3.1.3 Only selected open source licences in own products 29

3.1.4 Selected Open Source Licences in Selected Products 29

3.1.5 General acceptance of open source in own products 30

3.1.6 Openly strategic use of open source in own products 30

3.2 Standardisation and customer protection 31

3.2.1 Certifications 31

3.2.2 Support services for Open Source Software 32

3.2.3 Long Term Support 33

3.2.4 Protection against third-party claims 35

3.4 Licence Management and Compliance 38

3.4.1 Recording of licences used 38

3.4.2 Resilience of licensing information of different open source ecosystems 40

3.4.3 Container compliance 41

3.4.4 Implementation and Management of Licence Interpretations 44

3.4.5 Possibilities for implementing licence interpretations 44

3.4.6 Verification and recording of conversion to delivery 45

Inhalt

5

4

5

Creating Open Source Software 46

4.1 Open Source Governance 49

4.1.1 Contribution pyramid 49

4.1.2 Projects with informal governance 50

4.1.3 Charter-based open source projects 50

4.1.4 Foundation-based open source projects 51

4.1.5 Openness of governance models 51

4.1.6 Split of open source projects 53

4.1.7 Handling IP and copyrights 53

4.1.7.1 Assignment of »copyright«: Individual or Entity 54

4.1.7.2 Protection against third-party »copyright« 54

4.2 How can businesses participate in open source projects/Contributions 56

4.2.1 Open Source Participation from an Economic Perspective 57

4.3 Collaboration Tooling 58

4.3.1 Communication 58

4.3.2 Tool chain 59

4.3.3 Creativity 60

4.4 Conclusion 61

Business models around Open Source Software 62

5.1 Business models with Open Source Software 65

5.1.1 Services with Open Source Software 65

5.1.2 Open Source Software as a Service 65

5.1.3 Products with Open Source Software 66

5.1.4 Open Source Software as enabler for other business models 66

5.2 Risk assessment with regard to the use of Open Source Software 67

5.2.1 Participation in platform Open Source Software 68

5.2.2 Participation in vertical open source projects 68

5.3 Services for Open Source Software 70

5.3.1 Support 70

5.3.2 Development 70

5.3.3 Operation and provisioning 71

5.3.4 Maintenance 71

5.3.5 Consulting 71

5.3.6 Certification 72

5.3.7 Training 72

5.3.8 Dual licensing 72

5.4 Further models 74

5.4.1 Donation-based financing model 74

5.4.2 Foundation Model 74

6

6

7

Strategic Consideration of Open Source 76

6.1 Open Source Software in the Company 77

6.2 Open Source Strategy Development in the Company 78

6.2.1 Basic Consideration of an Open Source Strategy 78

6.2.2 Strategic directions 79

6.2.3 Goals of an open source strategy 79

6.2.4 Résumé and necessity of an open-source strategy 80

6.3 Open Source Program Office (OSPO) 81

6.3.1 Tasks of an OSPO 81

6.3.2 Organisational Aspects of an Open Source Program Office 83

6.4 Open Source Foundations 84

6.5 InnerSource 85

Open source compliance 86

7.1 Open source compliance as a task 89

7.2 License types and compliance activities 93

7.2.1 The copyleft effect (as a demarcation criterion) 93

7.2.2 Open source license typology 94

7.2.3 Compliance obligations in the overview 98

7.3 Open source compliance tools 100

7.3.1 Training 100

7.3.2 Advice 101

7.3.3 Tools 102

7.4 Special challenges 103

7.4.1 SPDX and license naming 103

7.4.2 The Javascript challenge 103

7.4.3 The AGPL or network usage as a compliance trigger 104

7.4.4 (L)GPL-v3 and replaceability 105

7.4.5 Open source compliance, automatic updates and CI/CD chains 106

7.4.6 Maven or automatic package aggregation 106

7.4.7 Compliance in the Cloud: Virtual Machines 107

7.4.8 The strong copyleft without a strong copyleft 108

7.4.9 Upstream compliance 109

7.4.10 Export control 109

7.4.11 Compliance and software patents 110

7.5 The international legal basis 112

7

8
9

Outlook 113

Excursus 118

9.1 On the emergence of Open Source Software 119

9.1.1 From Unix to Linux 119

9.1.2 A second and different path led to Linux 121

9.1.3 From »Free« to »Open« 122

9.1.4 Generation GitHub 123

9.2 Software Bill of Materials (SBOM) 125

9.2.1 What is an SBOM and what purpose does it serve? 125

9.2.2 What data is contained in an SBOM? 127

9.2.3 How is incompleteness dealt with, how is it documented? 128

9.2.4 How is an SBOM generated? 129

9.2.5 How is an SBOM transmitted? 129

9.2.6 How is a metric defined for the reliability and trustworthiness

of a 3rd party delivery of an SBOM? 130

9.2.7 What standards and formats are used for SBOMs? 130

9.2.8 How are SBOMs managed in the company? 130

9.2.9 Analysing and visualising SBOMs 131

9.2.10 Tools for managing SBOMs 131

9.2.11 What should be considered when procuring software from

suppliers in terms of SBOM? 132

9.2.12 What should be considered when delivering software to third

parties in terms of SBOM? 133

9.2.13 Classification of initiatives on SBOMs: What is happening in America,

what is happening in Europe and especially in Germany? 133

9.2.14 Outlook: How will the SBOM issue develop? 134

9.2.15 References 135

Appendix 136

List of abbreviations 137

Bibliography and source list 139

Literature Additions 140

Glossar 141

Keywords glossary 145

8

Foreword

This guide to Open Source Software (OSS) was developed by the Open Source Working

Group. This working group brings together experts from Bitkom member companies

who, in their professional activities, are intensively involved with the use of Open

Source Software in a professional corporate environment. However, the creation of the

guide is largely based on their personal voluntary commitment. In the past months, in

some cases years (the first ideas for revising the existing guide were already collected

and exchanged in February 2020), all those involved have dedicated themselves to the

project of revising the guide with a very high level of commitment, great attention to

detail and with the utmost professionalism.

In the process, the best structure, the best content and the best formulations were

fought over with a lot of passion and in countless telephone and video conferences, in

issues and pull requests on GitHub as well as in emails and messages, points of view,

perspectives and opinions were exchanged and solutions found in a consensusoriented

manner. You can now hold the result of this not always easy process in your hands!

We hope that this guideline does justice to the topic of Open Source Software in a way

that is both generally comprehensible and still meets high professional standards. It is

our explicit intention to continuously update the document in the future in order to

keep it up to date. We therefore cordially invite all interested parties to participate in

the further development of the guide. We are always available for questions and

critical comments on the contents.

 ■ Dr Ing Marius Brehler, Fraunhofer Institute for Material Flow and Logistic IML
 ■ Prof Dr Christian Czychowski, Nordemann Czychowski & Partner Rechtsanwältinnen

und Rechtsanwälte Partnerschaft mbB
 ■ Sebastian Dworschak, Nordemann Czychowski & Partner Attorneys at Law

Partnership mbB
 ■ Oliver Fendt, Siemens AG
 ■ Dr Lars Geyer-Blaumeiser, Robert Bosch GmbH
 ■ Sebastian Hetze, Red Hat GmbH
 ■ Holger Koch, DB Systel GmbH
 ■ Cédric Ludwig, Osborne Clarke
 ■ Dr Marc Ohm, Fraunhofer Institute for Communication, Information Processing and

Ergonomics FKIE & University Bonn
 ■ Michael Picht, SAP SE
 ■ Karsten Reincke, Deutsche Telekom AG
 ■ Julian Schauder, PricewaterhouseCoopers GmbH Wirtschaftsprüfungsgesellschaft
 ■ Marcel Scholze, PricewaterhouseCoopers GmbH Wirtschaftsprüfungsgesellschaft
 ■ Thomas Schulte, metaeffekt GmbH
 ■ Cornelius Schumacher, DB Systel GmbH
 ■ Dr Hendrik Schöttle, Osborne Clarke
 ■ Christof Walter, SAP SE

9

Acknowledgement

The Bitkom guide to Open Source Software in version 3.0 builds on the previous version.

At this point, we would also like to thank the authors of version 2.0 from 2016.

Dr Oliver Block, Bundesdruckerei GmbH | Antonia Byrne, Capgemini Deutschland

Holding GmbH | Oliver Fendt, Siemens AG | Christine Forster, DATEV eG | Sigrid Frei-

dinger, Nokia Solutions and Networks GmbH & Co. KG | Dr Martin Greßlin, SKW

Schwarz Rechtsanwälte | Björn Hajek, LL.M. (University College London), Infineon

Technologies AG | Dr Michael Jäger, Siemens AG | Sylvia F. Jakob LL.M. (Edinburgh),

Institute for Legal Informatics, Leibniz Universität Hannover | Katharina Komarnicki,

Siemens AG | Claudia Krell, SerNet GmbH | Marco Lechner, Accenture GmbH | Dr.

Johannes Loxen, SerNet GmbH | Felix Mannewitz, Siemens AG | Karsten Reincke,

Deutsche Telekom AG | Monika Schnizer, Fujitsu Technology Solutions GmbH | Dr.

Hendrik Schöttle, Osborne Clarke | Sonja Schlerkmann, LL.M., Vodafone Kabel Deutsch-

land GmbH | Martin Schweinoch, SKW Schwarz Rechtsanwälte | Udo Steger, Unify

GmbH & Co. KG | Maximilian Stiegler, Océ Printing Systems GmbH & Co. KG | Axel

Teichert, DB Systel GmbH | Dr Christian-David Wagner, Wagner Rechtsanwälte | Dr

Hans Peter Wiesemann, DLA Piper UK LLP

Berlin, June 2022

10

Changelog

All notable changes to the Open Source Guide are documented on this page. Its format

has been adopted from ↗ Führe ein Changelog. The version numbers of this guide are

assigned according to ↗ Semantic Versioning assigned.

[3.0] – 30.09.2022

Changed

 ■ The entire guide has been fundamentally revised compared to previous versions.

[3.1] – 28.02.2023

Changed

 ■ The chapter »Software Bill of Materials (SBOM)« was added as chapter 9.2

 ■ The chapter »Excursus: The emergence of Open Source Software« has been moved to

 ■ moved to level 9.1.

 ■ A »Changelog« page has been added.

 ■ The index has been updated

[3.2] – 28.08.2024

Changed

 ■ The glossary has been added to the appendix.

https://keepachangelog.com/en/1.1.0/
https://semver.org/lang/de/spec/v2.0.0.html

11

1 Introduction | Preface

Introduction | Preface

12

Introduction | Preface

The original version of this guide dates back to 2016, and six years later it was high time

to revise it. Because in the meantime, developments around »open source« have

accelerated massively and the realisation has matured on a broad front that digital

innovation is not possible in a cost-efficient way without Open Source Software.

This was also clearly shown by the Bitkom Open Source Monitor, the study on Open

Source Software in Germany conducted for the second time in 2021.1 Open Source

Software is used – across industries – in almost every development project and is a

component of almost all software products. Active participation in open source pro-

jects and the strategic use of open source methodology is also widespread today. In

other words, open source has won across the board.

In order to do justice to this reality, the Bitkom Open Source Working Group is presen-

ting an extensively revised new version of its guide.

This guide provides a broad overview of the widely established practice of open source

>use and its legal implications2. It highlights experiences with Open Source Software,

points to best practices for active participation in open source developments and

outlines ways to manage open source projects. It also highlights opportunities for the

strategic use of Open Source Software and methodologies, right into new business

models.

Using Open Source Software successfully ultimately means playing the cooperative

open source game of free use, free distribution and free modification. Those who play

along will experience that their own benefits far exceed the costs resulting from the

licence-related demands. Participants in this »game« will experience that they get

more out of the community than what they invest. So everyone can do the math and

see their personal positive balance.

In this broad sense, the guide is aimed at
 ■ Decision-makers,
 ■ Project leaders and
 ■ Developers

from business and administration who want to use Open Source Software and open

source methodologies and tap into their benefits.

The board of the Open Source Working Group hopes that you will enjoy reading our

Bitkom Open Source Software Guide, version 3.0, and that you will gain good insights.

The entire board is at your disposal for questions and comments, and we cordially

invite you to participate actively in the Open Source Working Group.

1 ↗ https://www.bitkom.org/opensourcemonitor
2 For a supplementary consideration of the legal aspects, please refer to the Quick Guide ↗ »Open Source Software – Legal

Basics and Action Guidelines«

1.	https://www.bitkom.org/opensourcemonitor
https://www.bitkom.org/Bitkom/Publikationen/Open-Source-Software-Rechtliche-Grundlagen-und-Handlungshinweise
https://www.bitkom.org/Bitkom/Publikationen/Open-Source-Software-Rechtliche-Grundlagen-und-Handlungshinweise

13

2 Info & Basics

Info & Basics

14

Info & Basics

2.1 Relevance of
Open Source Software

In the digital age, the relevance of software is ubiquitous. In the highly industrialised

countries, there are hardly any areas of life, work or leisure in which digital processes,

assistants or widgets are not established. What we call »digitalisation« nowadays is

largely run and driven by Open Source Software: billions of people have Open Source

Software in their pockets in the form of a smartphone operating system. The cloud

largely runs on Open Source Software3. It has even arrived on Mars as part of the Mars

helicopter Ingenuity4.

Studies show that Open Source Software is used directly or indirectly in almost all

companies. For example, the Bitkom Open Source Monitor 20215 found that 87% of all

large German companies consciously use Open Source Software.

Open Source Software is in no way inferior to proprietary software in terms of reliabi-

lity and security. In many areas, it shows itself to be an innovation engine with enor-

mous potential. Alongside the diversity of application scenarios is the abundance of

applications. Open Source Software has gained real economic significance.

The reasons for this are simple:

 ■ The software is free to use, there are no licence fees, nor is there any risk that the

use of the current version will be restricted by the copyright holder in the future.
 ■ By using standardised open source licences, no individual contract negotiations are

necessary.
 ■ Open development models give users more control and guarantee the indepen-

dence to maintain and further develop the software themselves or through service

providers (afterwards).

Even manufacturers who produce internet routers, televisions, car entertainment and

other hardware systems in large quantities use Linux almost exclusively nowadays.

Proprietary systems have been pushed back into specialised niches. Every company can

mutually access all innovations in Linux. This is precisely what makes open source

remarkable, by upholding cooperation and collaboration as well as the sharing of

results: technologies developed in an open process are available to all. Consequently, a

company no longer has to build and maintain the complexity in their own system

independently. Instead, everyone gives a small part and receives the entirety. This redu-

3 Cf. ↗ https://www.golem.de/news/open-Source-microsoft-hostet- mehr-linux-als-windows-vms-in-azure-
1907-142245.html

4 Cf. ↗ https://github.com/readme/nasa-ingenuity-helicopter
5 See ↗ https://www.bitkom.org/opensourcemonitor

87 %
of all large German

companies consciously

use Open Source

Software.

http://www.golem.de/news/open-Source-microsoft-hostet-
http://www.golem.de/news/open-Source-microsoft-hostet-
https://github.com/readme/nasa-ingenuity-helicopter
http://www.bitkom.org/opensourcemonitor

15

Info & Basics

ces the company’s own development costs, and competition shifts towards strategic

specialisations and service offerings.

This shift towards a shared, collaborative delivery of the technology itself and the focus

on a unique selling proposition that manifests itself in a service built on that technolo-

gy is very evident in the cloud: the so-called cloud-native technologies around Kuberne-

tes and other open source projects are prominent technologies that different compa-

nies build on when bringing competing offerings to market – although at the same

time they successfully develop the underlying technology together.

This goes hand in hand with the fact that profit can very well be made with Open

Source Software, because it is a misconception that Open Source Software cannot be

used commercially. The opposite is true: there are a number of established business

models that make use of the advantages of Open Source Software. New business

models are constantly emering that benefit from the openness of open source and the

enormous reach that can be achieved with open source projects. IBM’s acquisition of

RedHat in 20196 has gone down in recent history as one of the largest acquisitions of a

software company. RedHat’s business model is based exclusively on Open Source

Software.

However, these business models cannot be based on the generation of revenue via

licence fees and licence agreements. Because even in a commercial context, the essen-

ce of Open Source Software of course remains intact: constitutively, this includes that

customers cannot be billed for licence costs. However, a fee may be charged for the

work of compiling and installing software in the sense of a service, as well as for

support, maintenance or operation, i.e. general services related to the use of Open

Source Software or provided with it.

With Open Source Software, the business model shifts away from the pure licensing

business to other business models with and around Open Source Software, such as

subscription to services (detailed presentation in ↗ Chapter 5).

Nevertheless, the use of Open Source Software is not free, even if the use itself or the

right to use it – financially speaking – is indeed free – and always will be. The effort

required to use software responsibly and to ensure that, among other things, licence

compliance, security and support are adequately regulated, is reflected in corresponding

costs. However, standard approaches have emerged to effectively address these challen-

ges.7

6 See ↗ https://www.redhat.com/en/about/press-releases/ibm-closes- landmark-acquisition-red-hat-34-billion-defines-
open-hybrid-cloud- future

7 Read more in the chapters on strategy, compliance and open source management.

With Open Source Soft-

ware, the business model

is shifting away from the

pure licensing business.

It is a misconception that

Open Source Software

cannot be used

commercially

https://www.redhat.com/en/about/press-releases/ibm-closes- landmark-acquisition-red-hat-34-billion-deﬁnes-open-hybrid-cloud- future
https://www.redhat.com/en/about/press-releases/ibm-closes- landmark-acquisition-red-hat-34-billion-deﬁnes-open-hybrid-cloud- future

16

Info & Basics

2.2 Concept and Definition of
Open Source Software

In order to use Open Source Software effectively, it is helpful to first understand the

concept of »Open Source Software« itself, which also manifests itself in and with a

certain set of terms. Its origins lie in the Free Software movement, which was founded

in the 1980s by the American Free Software Foundation. It formulates four fundamen-

tal freedoms as a core idea that every software must fulfil if it wants to be Free and

Open Source Software: Whoever has it must also have the right at the same time,
 ■ to (a) execute them,
 ■ to (b) analyze them,
 ■ to (c) modify them to one’s own needs; and
 ■ to (d) distribute, even in altered form.8

A necessary condition for exercising the four core rights is access to the source code.

This is reflected in the term »open source«, which has now established itself, especially

in the business environment, as the common term to describe software that fulfils

these four fundamental freedoms9.

The Open Source Initiative (OSI)10 founded in 1998, developed the ten-criteria Open

Source Definition (OSD) from this11. It is now generally accepted to classify which

licences are considered open source. In addition to the right to distribute the software

and the availability of source code, the criteria of the open source definition ensure in

particular the non-discriminatory use of Open Source Software, so that it cannot be

restricted to certain use cases, groups of people or technological areas and products.

The constitutive rights of Open Source Software of use, inspection, modification and

distribution (also in modified form) are not per se associated with software: Software

is subject to copyright.12 According to this, all rights to a software are first due to its

authors. Only they can determine what others may and may not do with the work they

have created. In order for persons other than the authors to be able to use software in

a lawful manner, the author must grant them a right of use. The term »licence« has

come into use for such a right of use, which is regularly linked to certain conditions of

use and/or restrictions of use. Thus, if an author – often the programmers or their

employers – wants to distribute a software as Open Source Software, he must explicit-

8 cf. the Free Software Foundation Europe’s definition of free software, ↗ https://fsfe.org/freesoftware/
9 In addition to »Open Source Software« and »free software«, the contracted term »free and Open Source Software (FOSS)«

or »free, libre, and Open Source Software (FLOSS)« is sometimes used. Supporters of the Free Software movement stress
that the use of the term »Free« is important to emphasise the ideal values behind the freedoms. In practice, however,
especially from a licensing perspective, there is very little difference between »Free Software« and »Open Source
Software«. We therefore use the common term »open source« throughout this guide.

10 cf. ↗ https://opensource.org/
11 cf. ↗ https://opensource.org/osd
12 cf. e.g. for Germany §§ 69a ff. of the Copyright Act (UrhG)

https://fsfe.org/freesoftware/
https://opensource.org/
 https://opensource.org/osd

17

Info & Basics

ly grant the aforementioned freedom rights. He must place his work under a free

licence, an open source licence.

The OSI has also gone beyond the definition and implemented a »License Review

Process« with the aim of an »Approval«.13 This means that it is not subject to personal

interpretation whether an individual case is really Open Source Software or an open

source licence. For more than 60 open source licences, the OSI has ensured that they

fulfil the criteria of the open source definition and officially lists them.14 The OSI has

also implemented an »Approval Process«.

This has a practical value: anyone who uses software that has been released under an

officially listed licence knows, even without looking at the individual licence, that they

have all the rights with regard to this software that the OSD makes a prerequisite. The

user also knows that he does not have to take into account any restrictions that the

OSD excludes. However, this only applies insofar as it is an unmodified licence text

released by the OSD. Which conditions are attached to the exercise of the rights under

a licence is only revealed by the respective licence itself. In any case, Open Source

Software is ultimately only really Open Source Software if it has been released under

an official open source licence that fulfils the ten criteria of the OSD and that has been

confirmed by the OSI.

The question of how to describe software that is not Open Source Software is still open.

Common terms are »proprietary« or »commercial software«. However, the term

»comercial software« is misleading, as Open Source Software can also be used com-

mercially and does so on a large scale. Moreover, many business models exist in which

open source is an essential part of the commercial strategy. In the following, the term

»proprietary software« is therefore used to express that the rights holder reserves

essential rights and does not provide users with all four freedoms.

Even if the legal assessment of a software does not depend on its designation but on

the respective terms of use, a discourse on licence types has become established. The

term »Open Source Software« itself generalises – as does every term. Moreover, in

practice one occasionally encounters a certain laxity of speech. This can go as far as

deliberate misleading, where attempts are made to profit from the positive connotati-

on of the term »open source« even if no Open Source Software is offered at all.

This corresponds to the label of »open washing«. Anyone who wants to participate

appropriately in the discourse should only use the term »Open Source Software« if the

software in question is published under a licence officially recognised as open source

by the OSI. Misuse of the term »Open Source Software« could be considered a violation

of competition law.

13 cf. Open Source Initiative: The License Review Process, ↗ https://opensource.org/approval
14 cf. Open Source Initiative: Licenses by Name, ↗ https://opensource.org/licenses/alphabetical

The conditions attached

to the exercise of the

rights under a licence are

disclosed only by the

licence itself.

https://opensource.org/approval
https://opensource.org/licenses/alphabetical

18

Info & Basics

In this context, it is also worth mentioning a type of licence that has appeared more

frequently in recent years, which can be called »source available«. Licences of this

type, which have sometimes emerged as a modification of a recognised open source

licence, offer much the same rights as an open source licence, including, among other

things, the availability of the source code, but exclude specific use scenarios.15 In

doing so, they violate the first fundamental freedom and the non-discrimination

prohibition of the open source definition. Thus they are not open source licences and

must be analysed and considered as proprietary licences on a case-by-case basis.

15 Examples are the ↗ Server Side Public License (SSPL) or the Commons Clause, which try to prevent public cloud providers
from offering the software as a service.

C:\github\workspace\html2pdf12-0.html#fnref15
C:\github\workspace\html2pdf12-0.html#fnref15

19

Info & Basics

2.3 Opportunities and
challenges

To discuss the opportunities and challenges of Open Source Software means to judge.

Advantages and disadvantages are always subjective in that they are intrinsically

advantages or disadvantages »for someone«. Nevertheless, even people who are

fundamentally favourably towards the phenomenon of »Open Source Software«

because of their own advantages can take a differentiated view of the situation as a

whole. The world is rarely »black and white«. And what offers opportunities can still be

accompanied by risks elsewhere. With this in mind, the authors, who gladly and openly

see themselves as a team of »open source advocates«, nevertheless want to dare to

draw a certainly subjective, but also well-rounded conclusion.

2.3.1 Opportunities

Open Source Software offers advantages that are intrinsic to it – it is only through the

associated properties that it distinguishes itself as Open Source Software in the first

place:

Four basic Open Source Software rights: Open source compliant licences grant the users

of the software licensed in this way farreaching rights. The most important are the »4

basic rights«, namely to be allowed to use the software, for any purpose, to be allowed

to examine it, to be allowed to distribute it, to be allowed to modify it and to be allowed

to pass it on in modified form.16 The resulting full control over the source code leads to

two further important points:

Transparency: Well-organised Open Source Software projects have, in addition to a

source code control system accessible to all, such as Git or Subversion, different code

branches for stable releases and ongoing developments, clear releases, publicly availa-

ble mailing lists, bug tracking systems, wikis and so on. A good Open Source Software

project is therefore developed in public, not behind closed doors. However, the fact

that this information is available to everyone does not mean that anyone who wants

to can have write-access to the source code control system. In many Open Source

Software projects, only a few people have direct participation rights. It is true that

everyone may contribute to the success of the project by making changes. But often

these »preliminary works« are vetted and only included into the project’s sources after

being reviewed by separate integrators. This ensures that only code that has previously

16 cf. ↗ https://www.gnu.org/philosophy/free-sw.html

A good Open Source

Software project is

therefore developed in

public, not behind

closed doors.

https://www.gnu.org/philosophy/free-sw.html

20

Info & Basics

gone through a peer review is included in the project’s source tree. On the one hand,

this ensures quality. On the other hand, the procedure ensures that each code sequen-

ce can be assigned to a person. This is particularly important for licensing issues and

copyright-relevant actions.

Such transparency increases trust in software, which is a necessary success factor,

especially for software that handles sensitive data.17

Quality: Open Source Software is often characterised by high quality. The transparent

development processes enable this quality through the diversity of the developer

community and their interaction through peer reviews of concepts and code. To increa-

se efficiency, open source projects are usually also pioneers in the automation of test,

build and release processes. This contributes significantly to the quality of the soft-

ware.

Increased speed of innovation: Many Open Source Software packages implement new

features very quickly and are in themselves an innovative solution. This may be a

disadvantage for some software manufacturers insofar as they compete with the

Open Source Software packages with their proprietary software. For manufacturers

who integrate these innovative open-source software packages as part of their own

products, however, the advantage is twofold. On the one hand, innovative features are

quickly available in the product and on the other hand, by relieving the burden on their

own developers and the project budget, resources are freed up that can be invested in

the development of further Unique Selling Points (USPs) of the product.

Reusability: Open Source Software not only increases the speed of innovation, but can

itself be an incubator for innovation. Existing Open Source Software solutions can be a

building block or basis for further Open Source Software products. Here, too, resources

can be saved or freed up and thus put into the actual innovation.

Faster release: Products that contain Open Source Software can be brought to market

more quickly. The use of Open Source Software relieves the burden on in-house develo-

pers and the project budget. In addition, well-maintained Open Source Software

packages are usually also well tested and have a higher test coverage than the selfde-

veloped alternatives. Using Open Source Software therefore usually helps to achieve

product stability.

17 As an example, the Corona warning app for Germany has been developed as a transparent open-source project to increase
acceptance for its use among the population. ↗ https://github.com/corona-warn-app

Open Source Software

not only increases the

speed of innovation,

but can itself be an incu-

bator for innovation.

 https://github.com/corona-warn-app

21

Info & Basics

This is also due to the fact that the application spectrum of Open Source Software is in

principle broader. Self-developed solutions are often specifically tailored to a product

or to the company’s field of activity. If the broader properties of Open Source Software

are cleverly exploited, products can be brought to market earlier as a result.

Independence from the manufacturer: Users of Open Source Software packages

usually have greater room for manoeuvre. Errors (bugs) can be reported on the mailing

lists – often »well« reported errors are quickly fixed by the developer community.

However, reporters are not entitled to have the bugs fixed (see risks). Instead, own

developers or explicitly commissioned software service providers can fix the bug or

contribute the enhancement. The same applies to maintenance. In addition, commis-

sioned service providers can be replaced more easily because the basis of what they do,

the software, is freely available.

No licence fees: No licence fees need to be paid or demanded in order to use Open

Source Software.

Advantageous aspects in the company are:

Easy integration and adaptability: Because the source code of Open Source Software

packages is available, they can be easily integrated into the usually heterogeneous IT

landscape of a company and/or adapted for specific use in a product. Open Source

Software packages are, so to speak, rough diamonds that only need to be polished for

use in companies and products.

Increase of competence of own employees: Your own employees can increase their

own programming competence by analysing the source code. Many prominent Open

Source Software projects pose a reference with regard to the solution of programming

challenges. Consequently, the solutions realised in the projects can be used as temp-

lates for solving similar problems.

Cross-company opportunity for standardisation: Much of the software used in pro-

ducts has no differentiating factor, but is needed to ensure the functionality of the pro-

duct. It is this software that forms the basis for cross-company defacto standards that

are developed as Open Source Software in cooperation with other market participants.

This approach enables everyone to reduce the effort for these non-competitive parts

and still create a stable basis for product development. The freed-up development

capacity can be used for differentiating functionalities, which strengthens the market

opportunities of the participating companies.

No licence fees need to

be paid or demanded in

order to use Open Source

Software.

Many prominent Open

Source Software projects

pose a reference in terms

of solving programming

challenges.

22

Info & Basics

However, by collaborating on the Open Source Software, the influence of the participa-

ting companies on the software is also guaranteed, the company keeps its finger on

the pulse and avoids the risk of being surprised by changes. This prevents uncalculated

efforts to rectify structural discrepancies between the open source base and the

company’s own proprietary software parts.

2.3.2 Challenges

Security: Open Source Software users are not spared having to deal with a particular

discrepancy: Anyone who uses Open Source Software soon encounters the question of

how Open Source Software can guarantee security, when all possibilities of misuse and

exploitation of programming errors are, according to the concept, made freely and

openly available. There is nothing to doubt about this:

With Open Source Software, things are – by the very nature of Open Source Software –

really out in the open, more out in the open than with proprietary software, where the

source code remains under lock and key. To conclude from this that Open Source Soft-

ware is less secure than proprietary software and that proprietary software is therefo-

re inherently more secure is a mistake. For the users of proprietary software simply

do not know what possibilities of misuse and exploitation of programming errors are

contained in it. They certainly do not know whether these possibilities for misuse –

intentionally or unintentionally – have not already been passed on to third parties by

the manufacturers. To conclude from the fact that something cannot be seen that it is

not there is illusory. Users of proprietary software are dependent on assurances from

suppliers in this regard.

For users of Open Source Software the situation is quite different. Precisely because all

sources are open, they can – if it is important to them – check the security of the

software themselves. And even if it is not very important to them, they can still trust

– at least in the case of widely used Open Source Software – that others have actually

used this possibility of control. This also shows that with Open Source Software – trig-

gered by the community – improvements and corrections are often made available in a

much shorter time than with (commercially driven) proprietary software. Thus, on

closer inspection, the supposed disadvantage actually turns out to be an advantage.

With the large number of open source modules in use, which can easily number in the

thousands, another challenge arises: how can vulnerabilities in one of the many modu-

les be prevented from being overlooked? There are essentially two dangers here:

targeted attacks by infiltrating manipulated modules with malicious code, so-called

supply chain attacks, and the use of outdated versions with known vulnerabilities.

These dangers can be countered with suitable processes and tools for automation.

23

Info & Basics

Licence compliance: Open source licences offer extensive freedoms, but link these with

some obligations. As a rule, the licence text and copyright notices must be supplied

with the software. Some licences also require the source code to be made available,

some generally, others at least in cases of modifications. Fulfilling such conditions is

usually not a major hurdle, but requires careful and complete treatment of all open

source software used.

A specific challenge for Open Source Software users concerns the possibility that by

using Open Source Software in marketed software products, one’s own »core know-

how« must be disclosed because of the copyleft effect established with the Open

Source Software licence (reference to ↗ chapter 7.2). Business-critical unique selling

propositions may be unintentionally »generalised« in this way. That this possibility

exists is first of all a fact. Nevertheless, on closer inspection, this »danger« does not

appear to be too important: in most cases, the value of the unique selling proposition

of one’s own business in comparison with competitors is small in scope – even if it is

subjectively of great importance as an objective »triviality«. Conversely, this means

that the larger part of one’s own business can very well be realised in and with copy-

left-afflicted Open Source Software without offering competitors an unwanted advan-

tage. In addition, it must be taken into account that the copyleft effect only extends to

own code in certain usage scenarios and technical architectures. It is therefore import-

ant to differentiate precisely.

Support: For the reliable and secure operation of software, it must be ensured that the

necessary support exists to be able to correct critical errors and security problems in a

reasonable time. This is usually offered by software manufacturers as a commercial

service.

Open Source Software offers additional possibilities. On the one hand, other providers

can also be commissioned, since the openness of the code means that not only indivi-

dual manufacturers have the competence and rights to maintain the code and thus

offer corresponding support services, but this can also be done by third parties. On the

other hand, the users themselves can slip into this role and provide support independ-

ently. The community behind the project is often a great help here. However, it must

be carefully weighed up which guarantees are necessary in a specific case and who can

provide them reliably and within the required time frame.

Sustainability of open source projects: By publishing Open Source Software, one does

not enter into a formal obligation to maintain this software in the long term. Open

source licences give extensive rights to the published state of the code, but exclude

liability and warranty – at least as far as the national legal framework allows. Further-

more, they do not specify the timing, nature and extent of future development, except

that some licences may require future code to be published under the same licence.

Open source licences

offer extensive freedoms,

but link these with some

obligations.

Open source licences

give extensive rights to

the published state of

the code, but exclude

liability and warranty.

24

Info & Basics

This can lead to problems on the part of users who use Open Source Software over a

longer period of time and thus depend on open source projects also being developed

sustainably. Two aspects in particular need to be considered here, the governance of

projects18, as well as their funding. As a responsible user of Open Source Software, one

must take this into account both when selecting projects and, when using projects,

find ways to contribute to the sustainability of the projects and thus maintain the basis

for reliable maintenance of the projects.

2.3.3 Pitfalls

Finally, there are challenges that are sometimes presented as specific »problems« of

Open Source Software, when in fact they also affect proprietary software in the same

or similar sense. We list some of these aspects:

Licensing entanglements: Software packages today are complex. They contain compo-

nents that are not necessarily distributed under the main licence. At a time when more

and more commercial products are also distributed in combination with open source

components, this challenge arises for open source and proprietary software alike.

Legal side effects: Open Source Software can – even unintentionally – infringe third-

party rights. Programmers can use patents quite unintentionally without acquiring

patent licences. However, again, this applies equally to open source and proprietary

closed source software: both types of software can infringe the (patent) rights of

others, so that the users of the software are challenged for merely using it. In the case

of software that is commercially purchased from a manufacturer, however, one belie-

ves to have a claim opponent for such indirect damages in and with the supplier’s

warranty. Whether the financial strength of the supplier is sufficient to actually cushi-

on this damage, including the associated legal expenses, requires separate consideration.

Revocation of rights of use: Every violation of the transfer obligations entails the risk

of permanent revocation of the rights of use. This can happen with proprietary soft-

ware as well as with Open Source Software.

18 See also the section on open source foundations that contribute to the sustainability of projects by establishing open
governance.

Any violation of the

transfer obligations

entails the risk of perma-

nent withdrawal of the

rights of use.

25

Info & Basics

Limited liability: Open Source Software licences always contain a socalled disclaimer

of liability. Due to legal peculiarities, this exclusion is reduced in Germany – very

roughly speaking – to the liability promises that accompany a gift. Commercially

distributed software is subject to stronger obligations. Nevertheless, their liability

options are also reduced in terms of commercial strength, while, conversely, commer-

cial distributors of Open Source Software enhance precisely the original limited Open

Source Software liability as one of their business models.

Unkown follow-up costs: Unestimated and unplanned costs, such as upgrade or

security-related reintegration work, that arise from the use of Open Source Software

can call the business case of a product into question. But it is certainly also true for

proprietary software that unestimated and unplanned costs corrupt the business case

of a product. What is certainly not true (for both), however, is that users are necessarily

faced with costs that cannot be estimated or planned for. Here as well as there, a

proper analysis of the consequences is required, both when using proprietary software

and when using Open Source Software.

Know-how deficits: The ease of using open source packages sometimes tempts people

to underestimate the effort required to integrate them into their own product and to

think that they can be reproduced at any time. However, this work requires expertise.

What is, so to speak, »automatically« included and remunerated in the service in the

case of commercial use, must also be organised with regard to packages obtained

directly from the open source project. Doing without this is tantamount to doing

without manufacturer support.

Outdated software: Open Source Software can become outdated, be it in develop-

ment, be it in documentation, be it in distribution. Suddenly, users are faced with

»dead« packages that are no longer maintained. However, there is also a similar case

on the proprietary side. Companies can also become »obsolete«. They can close down,

change their focus or be bought up. And just as suddenly, the customers of proprietary

software are also faced with »dead« software. On the open source side, however –

because of the four freedoms – there is at least the possibility of a »revival« in principle.

Negative press: In the case of Open Source Software licence violations, there is certain-

ly the possibility that the software scene will react violently in terms of communicati-

on and thus damage personal reputations. Conversely, the suppliers of proprietary

software also have fierce means at their disposal in the event of a violation of their

contractual terms, except that these are likely to be primarily legal.

Troubleshooting: There is no entitlement to troubleshooting vis-à-vis the community.

The ease of use of open

source packages someti-

mes tempts one to unde-

restimate the effort

required to integrate

them into one’s own

product.

26

Info & Basics

In many cases, you will still receive excellent support from the community and, in

addition, support with guaranteed reliability is often offered in return for payment.

These few examples show that there are also challenges with Open Source Software.

However, they also show that corresponding challenges must also be managed on the

side of proprietary software. In terms of »challenges«, open source is not quite as

special as is sometimes claimed; in terms of »opportunities«, however, it is very special.

27

3 Benefits of
Open Source Software

Benefits of Open Source Software

28

Benefits of Open Source Software

3.1 Strategy examples for
the use of
Open Source Software

The use of Open Source Software in one’s own IT should be well thought out. In the

course of this guide, we highlight various benefits and pitfalls of open source and also

devote an entire chapter to an overarching open source strategy.

However, if you only want to use Open Source Software and are not yet thinking about

the »big picture«, this section provides food for thought and examples of how open

source can find its way into your own company.

3.1.1 General rejection

The use of Open Source Software components is not permitted in the company.

Open Advantages Open Disadvantages

Isolation from unknown distribution, coopera-
tion and licensing models.

No use of freely available goods, implementati-
on and control costs of the strategy are not
necessarily lower than the costs of a strategy
»pro« Open Source Software.

Open Source Software is a component of most
proprietary software and hardware products.
As a user, doing without Open Source Software
is therefore very costly and likely impossible.

29

Benefits of Open Source Software

3.1.2 No open source in own products

Bringing Open Source Software into the supply chain (embedded in own products) is

not allowed.

Open advantages Open disadvantages

Strict avoidance of involuntary publication of
unique selling propositions.

Use of all freely available goods in self-develop-
ment excluded.

Use of open source by suppliers possible,
whereby risks, support and maintenance
expenses can be shifted to them.

3.1.3 Only selected open source licences in
own products

Bringing Open Source Software into the supply chain is possible, provided that the

conditions of the respective licences and maintenance aspects are accepted by the

company as a lump sum. Typical: No components with strict copyleft.

Open advantages Open disadvantages

More fine-grained use of open
source components possible.

Different product and risk groups require
different approval classes. A simple allow/deny
list often reaches its limits here.

Monitoring of the components necessary.

3.1.4 Selected Open Source Licences in
Selected Products

Bringing Open Source Software into the supply chain is possible, provided that the

conditions of the respective licences and maintenance aspects are accepted by

the company on a case-by-case or use-case basis. Typical: No copyleft in embedded

devices and only if the copy-left effect does not come into play due to various factors.

Open advantages Open disadvantages

Most correct use of open source
components possible.

Case-by-case testing, staff training and
fine-grained models necessary.

Wrong decisions possible and expenses often
high.

Detailed monitoring of the
components necessary.

30

Benefits of Open Source Software

3.1.5 General acceptance of open source in
own products

The use of Open Source Software is permitted.

Open advantages Open disadvantages

Full access to the entire pool of open
source software.

Pure use is not a sustainable strategy in
most cases.

Full cooperation with the community
is possible.

Cooperation with the community remains
unsystematic.

There is a danger of falling into the »mainte-
nance trap«: Occasionally, Open Source
Software is still modified or extended before it
is integrated into one’s own products. If these
modifications and extensions are not then
returned to the corresponding Open Source
Software projects, they have to be integrated
again into the updated software version after
an upgrade of the Open Source Software base.
In the end, this is »unproductive« work.

3.1.6 Openly strategic use of open source in
own products

Open Source Software is of strategic and competitive importance. The company will

become a valued and active part of the open source ecosystem and its products

and services will benefit from the technical and economic advantages of Open Source

Software.

Open Advantages Open Disadvantages

Full access to the entire pool of open
source software.

A longer time frame will have to be estimated
for the implementation of the strategy,
which means that it is a »long term invest-
ment«. All those involved must be aware that
the investment will only really pay off in the
longer term. In this context, it is worth recal-
ling the definition of strategy as »achieving a
medium-term or long-term corporate goal«.
Accordingly, the long-term nature of a strategy
is not a disadvantage, but an inherent charac-
teristic; unfortunately, this is often forgotten.

Full cooperation with the community is
systematically designed to meet the compa-
ny’s goals.

The strategy is only promising if a rethinking
process takes place in the minds of all those
involved and responsible and there is a
willingness to go through a certain learning
curve. Furthermore, one must be aware
that parts of the company may become more
transparent as a result. This is not a disadvan-
tage in itself, you just have to know it in
advance and be able to deal with it.

31

Benefits of Open Source Software

3.2 Standardisation and
customer protection

3.2.1 Certifications

The term »open source« itself is also successful as a label and often serves as a marke-

ting tool. However, not everything declared as »open source« deserves this title – at

least not according to OSD or the FSF’s definition of free software. The certification of

licences by the OSI (cf. ↗ Section 2.2) fulfils an important standardisation function: The

use of an appropriate licence guarantees providers and users of Open Source Software

reliability with regard to compliance with the respective OSI specifications.

Occasionally, however, Open Source Software appears that was created on the basis of

an established licence from the BSD licence family, but with deviations so that the

result may no longer comply with the OSD. The software in question may still be open

source but subject to other restrictions, such as a ban on further commercial use or the

exclusion of certain user groups (such as defence companies, intelligence services).

Providers should therefore opt for a licence certified by the OSI – especially since the

official OSI list contains a corresponding licence for almost every application. Users

should make sure that the software is licensed under one of the listed licences. This

minimises uncertainties and potential risks for both sides, but does not exempt them

from checking the concrete use in each individual case. This applies especially to

unusual licence obligations of licences that do not comply with the OSD.

By now, the press and the public are sensitised to abuses of the label »Open Source

Software«. Those who use the labels »open source« or »free software« should be

aware that the internet and social media quickly expose cases where this is only a

façade. The potential damage to the image can be higher than the benefits that should

be achieved through the declaration.

Certifications play a not insignificant role in the field of Open Source Software and

contribute to standardisation. On the one hand, certifications for (legal) persons can be

considered, and on the other hand, those for the open source licences used. From the

analysis of possible open source business models (cf. ↗ Chapter 5), it is clear that

companies need different criteria to distinguish their offerings based on Open Source

Software than is the case with proprietary approaches based on license fees.

Certifications play a not

insignificant role in the

field of Open Source

Software and contribute

to standardisation.

32

Benefits of Open Source Software

Proven expertise is one such criterion that can create advantages over competitors.

The qualification of the employees becomes clear through the examinations taken at

the Linux Professional Institute (LPI)19. In associated courses (some of which are

self-study), those interested acquire knowledge at various levels of experience and,

if successful, receive a certificate. With the LPI,19 the learning materials and the corre-

sponding exams, there is thus a uniform, standardised knowledge base. This also

facilitates the writing of job offers and the assessment of an applicant’s level of know-

ledge. For companies, for example, ISO-52302020 stands as a seal of Open Source

Software compliance.

3.2.2 Support services for Open Source Software

Open Source Software generally differs from proprietary software in terms of support

services. The main reasons for this are, on the one hand, the often decentralised

development of the software without a specific contact person for the users and, on

the other hand, the fact that the software is usually made available free of charge for

use or further development.

While the warranty for software distributed in return for payment is governed by the

statutory provisions of the law on sales or contracts for work and services, the warran-

ty for software provided free of charge, such as Open Source Software, is limited. As a

rule, it is governed by the legal provisions of the gift. As a result, the manufacturer is

only liable for defects if it can be accused of intent or gross negligence or of fraudulent

concealment of a material or legal defect. A defect of title exists in particular if the use

of the software is opposed by the rights of third parties. The advantage of no licence

costs is therefore offset by limited warranty claims.

In order to close the gap of missing warranty claims that arises with free software, it

may be advisable to make use of paid service and support services. The palette of such

offers is diverse – it ranges from troubleshooting to closing security gaps to further

development and individual customisation of the software.21

Depending on the content of the contractual agreement, different types of contracts

can be considered with regard to service and support services: If the services are per-

formance-related according to the agreement of the parties, it will generally be a

contract for work and services. In this case, a concrete performance result or an activity

success is owed, for example, the elimination of faults or errors and the maintenance

of the functionality of the Open Source Software. If, on the other hand, it is merely a

atter of the conscientious implementation of the measures, for example simple

19 cf. ↗ https://www.lpi.org
20 ↗ https://de.wikipedia.org/wiki/ISO/IEC_5230
21 cf. ↗ Chapter 5 on business models

To close the gap of missing

warranty claims, it may

be advisable to make use of

paid service and support

services.

https://www.lpi.org
https://de.wikipedia.org/wiki/ISO/IEC_5230

33

Benefits of Open Source Software

consulting services in the use of Open Source Software, a service contract comes into

consideration. Since in this case no tangible result is owed, care should be taken to

specify the quality of the service and support to be provided.

A clear classification as a contract for work and labour or a contract for services is not

always easy and ultimately depends on the design of the contractual relationship in

detail. The parties involved should make sure that the agreements are as clear as

possible in order to create a secure basis for the joint cooperation and to avoid disag-

reements in case of deficiencies in performance. If a contract for work and services is

desired, acceptance in particular should be expressly regulated.

It should not go unmentioned that with Open Source Software, users always have the

option of providing support themselves, since open source licences grant all the neces-

sary rights, in particular the right to modify the code and to pass on modified code.

If the necessary competence and resources are available, this can be an alternative to

purchased support services.

Support for Open Source Software is often in demand enough to make it a business

model in its own right. One criterion for evaluating support service providers is contri-

butions to the open source projects covered by the support. However, it should be

noted that this is not the appropriate criterion for every form of service. For providing

security updates it is a good indicator, for consulting services not necessarily. In any

case, funding a support service provider who actively maintains, services, monetarily

supports or contributes features to the software also strengthens the project.

3.2.3 Long Term Support

»Long Term Support« (LTS) offers users a special kind of security: the product versions

are provided with important bug fixes and security upgrades for a longer period of

time. The reasons why this can be a special challenge are as follows:

Open Source Software is continuously developed by the community in two ways. On

the one hand, it involves the provision of new, functionally enhanced versions of the

software. On the other hand, it is about providing bug fixes and security upgrades of

the functionally non-enhanced version.

Users who do not always want to switch to the latest functional versions immediately

therefore have an interest in the version they use being provided with bug fixes and

security upgrades over a longer period of time, without this being accompanied by a

functional upgrade. Distributors of Open Source Software have developed the concept

of »long-term support versions« for this purpose. Here, the distributor guarantees for a

certain collection of Open Source Software that it will deliver the desired bug fixes and

security upgrades over a longer period than usual.

A clear classification as a

contract for work and

labour or a contract for

services is not always

easy and ultimately

depends on the design of

the contractual relation-

ship in detail.

34

Benefits of Open Source Software

In other words, LTS versions focus on software quality in order to minimise risk, while

new features take a back seat.

Stable LTS versions are usually characterised by a feature freeze. The software status

reached is branched off from normal development at a certain point and functionally

frozen. While new functions flow into the main development branch of the source

code and are already delivered with newer versions, only bugs and weaknesses are

fixed for the branched-off status. The corresponding patches can be made available

individually or in new releases (maintenance or service packs, minor releases, etc.).

Therefore, updates are less frequent and consist – if at all – of functions that have

already been extensively tested. This is to minimise the risk of new bugs creeping in or

previous functions being unintentionally compromised or even taken out of service.

A typical cycle for such an LTS release is two years – but can also be shorter or longer or

relative to other releases.

The feature freeze variant should be considered by Open Source Software providers in

their own LTS strategy, both in terms of the duration for which old versions are still

supported and in terms of the release of special LTS versions. Meanwhile, another

business model is to offer commercial LTS beyond the period guaranteed by the com-

munity.

Users of Open Source Software should inform themselves about the respective rules of

the LTS. Almost all projects have their own policy, such as the Eclipse Foundation or the

Ubuntu distribution created by the Canonical company. For long-term IT and product

planning, the information to be gained from this is of great value.22

22 A special case is represented by manufacturers of customer electronics who use Linux on their systems: Here, a cross-com-
pany Long Term Support Initiative (LTSI) was launched in the form of an industry-wide project. This project defines Long
Term Support for an industry branch of the Linux kernel, which serves as a reliable basis for customer electronics. (cf. for
example: ↗ https://ltsi. linuxfoundation.org/what-is-ltsi)

 https://ltsi. linuxfoundation.org/what-is-ltsi

35

Benefits of Open Source Software

3.2.4 Protection against third-party claims

The use of Open Source Software can lead to the infringement of third party rights.

These include in particular third-party copyrights and patent rights, but also trademark

rights. Since Open Source Software is not usually examined and analysed in detail with

regard to such legal positions before it is used in practice, there is a risk, which should

not be underestimated, of infringements of rights and thus of expensive warnings,

injunctions and claims for damages as well as cost-intensive patent disputes initiated

by the respective rights holders. Ultimately, this can affect everyone – those who

distribute Open Source Software and those who use Open Source Software.

In ↗ section 7.3.2, OpenChain and ISO 5230 are discussed. This is an industry and ISO

standard for reducing open source compliance risks in the enterprise and supply chain.

In the case of software provided free of charge, the licensor is only liable to a limited

extent for defects in title. If neither intentional nor fraudulent action was taken –

which is often the case – the users or distributors are left with the damage; in this case

they alone bear the risk of defects.

In this case, some distributors offer special insurance cover for a fee. Such products,

marketed under the name »Indemnification Program« or »Assurance Program«, for

example, grant Open Source Software users additional claims and protect them finan-

cially against the risks mentioned. Such insurance policies usually cover damages

arising from patent and copyright infringements to a certain extent. In these constella-

tions, the risk of infringement of third-party rights is also reduced by the fact that

typically more effort is put into checking for such possible third-party rights by the

distributors.

In individual cases, however, it should be checked whether these insurance products

also cover the concrete intended use of the software. Care should be taken to ensure

that claims are not limited to the case of personal use if the software is intended to be

distributed individually or in a package with other components. Also, the insurance

may only cover a core of the distribution, but not all programme parts contained in the

distribution.

The use of Open Source

Software can lead to the

infringement of third

party rights.

36

Benefits of Open Source Software

3.3 Quality Criteria to Use
Open Source Software

Anyone wishing to use Open Source Software should not disregard operational aspects

and quality criteria of any software in open source. This is especially true since Open

Source Software comes without SLAs or contractual assurances or liability of any kind

when used directly.

Particularly in the case of frequent or critical use of frameworks, libraries, infrastruc-

ture and services, it quickly becomes relevant whether the software is linked to a

company, whereby service and support can be purchased in case of doubt, whether a

lively and diverse community exists and helps out, which may express financial needs,

or whether no one or only a few see themselves as responsible for the software.

There is no conclusive list of criteria, because what is relevant to a software always

depends on its use. However, some aspects are frequently encountered and are sum-

marised below.

 ■ Governance: How are decisions made in the project and who has what influence?

Larger projects have many stakeholders who all have some form of influence on the

project. Who leads the project? What intellectual property arrangements are in

place? Who pays for infrastructure and/or maintenance? How this is implemented

usually has to be examined on a case-by-case basis. However, it can be uniformly

said that the conscious support of the project by third parties, for example by an

established open source foundation, often already sufficiently addresses various

legal and organisational aspects.

 ■ Maintainability and support: Open Source Software can be used free of charge – but

it does not have to be. And it is often not directly apparent whether commercial

support, as described in ↗ Chapter 3.2.2, is available for a software. Depending on

the intended use, it should be determined whether and what kind of support is

possible.

 ■ Financial and personnel sustainability: Many open source projects complain about a

lack of funding or changing interests of the developers. Often the so-called bus

factor is also much lower than one might assume from the reputation of some

projects. Those who rely on open-source software should ask themselves whether

funding this ecosystem offers added value. It is often possible to combine the

pleasant with the useful here, provided that contributors to the software offer paid

service and support.

Those who rely on Open

Source Software should

ask themselves whether

financing this ecosystem

offers added value.

37

Benefits of Open Source Software

 ■ IT-Security: Open source is no guarantee of security. It is clear that the reuse of, for

example, specialised cryptographic libraries and the possibility of external reviews

can enable quality, but this is by no means an inevitable consequence. Those who

use open- source software must not forget that the creators may not have expe-

rience in dealing with security-relevant aspects or sufficient resources for appro-

priate optimisations. Software with sufficient documentation, high scores in static

and dynamic code analyses and transparently identified mechanisms for quality

assurance can often be developed and maintained much more easily and suggests

greater experience on the part of the developers. A justifiable or unmanageable

bug/issue backlog also quickly provides further information about stability.

 ■ Contributability: Open source does not guarantee that you can contribute, and

even though most open source projects gratefully accept many contributions, there

are also other interests. For example, it is uneconomical for »open core« solutions if

the open source solution becomes too good or too complete. Language barriers,

different quality requirements, CLAs and long-term ideas about project develop-

ment can also quickly become a problem. Sometimes even own interests stand in

the way of a CONTRIBUTION, for example if the CONTRIBUTION would contradict

the image or strategy. Projects often indicate which guidelines apply to the contri-

bution by means of a CONTRIBUTING file.

Various projects approach this problem from different directions. The ↗ Best Practices

Program of Core Infrastructure Initiative or the open source tool ↗ fosstars can be

mentioned as exemplary criteria catalogues. The approaches shown represent an

incomplete list of possibilities for evaluating Open Source Software. It is strongly

recommended to use several approaches in combination to form a more comprehen-

sive picture in a selection process.

Important: Which Open Source Software is really important is rarely directly obvious.

Often different departments use different and specialised components, but unknow-

ingly communicate via the same cryptographic libraries, are based on the same web

frameworks or use the same database. Which component is thus important or even

irreplaceable from this point of view often only becomes clear when a department,

such as an OSPO, maintains statistics on this.

https://openssf.org/programs/best-practices-program/
https://openssf.org/programs/best-practices-program/
https://openssf.org/programs/best-practices-program/

38

Benefits of Open Source Software

3.4 Licence Management
and Compliance

Regardless of which of the above variants is chosen: If already existing or external

Open Source Software forms part of the delivery or publication, the provider must

ensure that the licences involved are complied with. The basis for this is licence man-

agement, the essential features of which are explained below.

Licence management includes the following aspects:

1. recording of the licences used

2. carrying out licence interpretations

3. management of licence interpretations

4. definition of the implementation possibilities of licence interpretations

5. verification and recording of the implementation for delivery.

More on compliance from a formal point of view can be found in ↗ Chapter 7. In the

following, some practical aspects will be examined in more detail.

3.4.1 Recording of licences used

The systematic recording of the external software used and its licences forms the basis

of all further licence management activities and measures.

Neither the systematic recording of software from third-party providers nor licence

management are specific to Open Source Software, but a general task that every

company has to carry out as part of its compliance activities.

All Open Source Software components installed on computers in

the company or incorporated in products of the company should be

recorded in a central register.

The result would have to be continuously updated and maintained so that changes in

the conception are also systematically taken into account. The employees involved

with Open Source Software would have to enter the relevant information, including

information on the purpose and use of the Open Source Software in the company,

always before starting work with the Open Source Software.

39

Benefits of Open Source Software

A corresponding in-house database should contain the following information:

 ■ Name and version of the Open Source Software,
 ■ Author or source of the Open Source Software,
 ■ Licence type and version of the licence of the Open Source Software,
 ■ Start of use,
 ■ Type of use:

 ■ Programme or library,
 ■ Embedded component or stand-alone unit,
 ■ in modified or unmodified form,
 ■ with disclosure to third parties or without disclosure,
 ■ in the form of binary files or as source code,

 ■ Name of the employee involved in the use of the Open Source Software,
 ■ Target project for the use of the Open Source Software,
 ■ planned internal use of the Open Source Software with or without modifications,
 ■ planned external use (copy, distribution) of the Open Source Software with or

without modifications,
 ■ Approval of Open Source Software use by the relevant decisionmakers.

In the case of proprietary software, the licence conditions are »negotiated« between

the licensor and the licensee, at least in principle. In the case of Open Source Software,

the licences and their conditions are generally known in advance and – de facto for the

most part – non-negotiable. Thus it is practically a matter for the licensee, i.e. the user

of Open Source Software, to record the licences that are relevant for a complete (open

source) software package. This means that in case of emergency – i.e. where one

cannot rely on preliminary work by the community – the entire package must be

searched for licence references.

Due to the complexity and size of today’s software projects, a manual search is practi-

cally not feasible and also not reasonable. A number of software tools are available

that support the identification of the licences used in a software package. Two of these

software tools deserve special mention in this context because they are themselves

open source projects. These are Open Source Review Toolkit23 and FOSSology24.

However, simply identifying the licences involved and the origin of the respective open

source packages is not sufficient in the event that the open source package is to be

redistributed either in binary form or in source code, for example as part of a product

or solution. Most open source licences require that users of the software be provided

with the licence texts along with the software. In addition, it is at least good tradition

to also name the authors of the software. The way in which this is to be done and in

what format is often not defined and is only described in more detail in some licences.

The only condition is that this information must be human-readable and deposited in

an easy-to-find location.

23 cf. Open Source Review Toolkit (ORT), ↗ https://oss-review- toolkit.org/
24 cf. FOSSology: Advancing open source analysis, ↗ https://www.fossology.org

Most open source licences

require that users of the

software are provided with

he licence texts with the

software.

https://oss-review- toolkit.org/
https://www.fossology.org

40

Benefits of Open Source Software

The lack of a standardised format for providing information to users of the software

has so far led to many companies implementing different solutions that are incompati-

ble with each other. This is a growing problem, especially for suppliers, who may have

to provide the same information in many different forms and formats. The problem

has been addressed for some time by the Linux Foundation within the framework of

the »Open Compliance Program«25. One element of the programme is the definition of

the SPDX exchange format26, which allows the listing of the components used,

their files, as well as the licences involved and the corresponding authors. This stand-

ard is available in version 2.2.1 as ISO Standard 5962:2021. This procedure of a struc-

tured recording of used open source components is known as Software Bill of Materi-

als (SBOM). It is increasingly becoming a central tool in the open source compliance

process.

Ultimately, the open source input control at the companies may be limited to the

evaluation of such documents – provided they were created by the suppliers with

appropriate care or automated with the help of suitable tools. Nevertheless, it is

important to note that it is the duty of the using company to actually fulfil all condi-

tions of an open source licence. It is not possible to shift this obligation to the suppliers.

This structured and ideally standardised recording of open source components in use is

also known as the Software Bill of Materials (SBOM).

3.4.2 Resilience of licensing information
of different open source ecosystems

When talking about recording licensing information, it is assumed that open source

projects themselves report sufficient licensing information. However, the reality is

often that in different ecosystems, especially those that are fast-moving or complex, or

that want to make it very easy for open source entrants, there are often insufficient

rules for providing open source licence information.

In some ecosystems, for example, it can be observed that code is often published

without licences or that licence information is incorrectly or incompletely reported.

While open source operating systems often make rather high demands on compliance

and also push it, other distributors already show significantly less enforcement of

licence types and information. In the end, there are distributors of complete composi-

tions such as container images, which are usually non-transparent with regard to

licences and content.

25 cf. Linux Foundation: Open Compliance Program, ↗ https://compliance.linuxfoundation.org/
26 cf. ↗ https://spdx.dev – the standard is also applied in this guideline

https://compliance.linuxfoundation.org/
 https://spdx.dev – the standard is also applied in this guideline

41

Benefits of Open Source Software

Anyone using open source needs to make sure which ecosystem he or she is dealing

with, and which subcontracting he or she has to expect, or which risks are to be

expected in the data situation. This is often where the desire for compliance and the

reality of the data situation collide. For example, theoretical requirements may be

trivially feasible in a few ecosystems and at the same time lead to disproportionate

expenditure in others.

Nevertheless, there are various possible solutions. Those who use open source for

exploratory purposes and in the low-risk area can often find an economically appropri-

ate middle ground between complete and forensic compliance and accepted risk. In

addition, it is often a good idea to combine open source and security, because often

the most opaque solutions in terms of licensing law are equally opaque for various

security measures. An example of this could be container images, which are only

released for use after explicit testing or from a controlled internal build.

3.4.3 Container compliance

Containers are a method of encapsulating software, both at runtime and for distribu-

tion. Sometimes containers are described as a lightweight form of virtualisation, but in

fact significantly different technology is used, which brings specific compliance chal-

lenges.

The central advantage of containers is their ease of handling. With just a few com-

mands, container images can be downloaded, further container images derived, a

container instantiated or container images published. Systems are built from a multi-

tude of containers, integrated and orchestrated via specialised tools.

The former hype has grown into a serious technology that will be an important foun-

dation for future innovation. Workflows, testing, test operation, rollout and productive

operation are considerably simplified, and the massive open source content enables a

high level of transparency and adaptability. In addition, containers have reduced

resource requirements, especially compared to virtual machine images.

The offer to use container technology here covers the entire range of possible uses –

from purely internal use to worldwide deliveries of solutions with various supporting

support measures, to »self« updating complete solutions already in implementation.

But the speed and elegance of a new technology has often been a deceptive protec-

tion against oversights and the violations that come with them.

The central advantage of

containers is their ease of

handling.

42

Benefits of Open Source Software

The simplicity of container technology makes it possible to pull together software

from a wide variety of sources, even in an unstructured way. Each Linux distribution

handles licence and copyright information strikingly differently and at very different

levels of quality or detail. Patch policies are fundamentally different, following differ-

ent philosophies and necessities. In addition, software can also easily be integrated

directly into containers without using consistently built packages of a Linux distribution.

This creates a great potential for omissions, both in their own development and in the

development of the suppliers, i.e. the entire supply chain. Because while a container

hides the complexity of a software stack in its external appearance, the legal, regulato-

ry and contractual obligations still apply to all components used and their interaction.

Unnoticed, this new technology could undermine existing corporate policies. A possi-

bility that should not be underestimated.

From the point of view of licence compliance managers or IT law specialists, many of

the current container results can be compared to Pandora’s box:

 ■ Container content is often obtained from a variety of different sources where

trustworthiness of sources and content cannot be readily assured.

 ■ Often licence references are blurred, incomplete or have even been completely

removed (keyword: pico-container).

 ■ The question of plausibility, compatibility and fulfilment of licensing obligations

remains unanswered already at the source of a basic container image.

 ■ Without further information, tools and effort, the company can hardly come to a

conclusion about how secure the software in the container is and which known

security vulnerabilities may be relevant.

 ■ The technology goes beyond the scope of a container. This means that the licence of

each container image and the content it contains must be kept track of.

Without the appropriate support tools and a dialogue between the disciplines in the

company, a realistic assessment is hardly possible. Moreover, every company should

urgently come to its own legal understanding and its own assessment and positioning

vis-à-vis these new technologies as well.

The simplicity of contai-

ner technology makes it

possible to pull together

software from a wide

variety of sources, even

in an unstructured way.

43

Benefits of Open Source Software

In this light, a one-sided ad-hoc assessment, immediate use or disclosure appear

unprofessional and negligent.

In principle, the situation is not hopeless. The basic procedures for open source compli-

ance can also be applied to containers. However, the peculiarities of container technol-

ogy pose special challenges, for example:

 ■ The construction of containers from different so-called layers requires that, in

principle, licence compliance must be established for each layer.

 ■ There is a lack of standardised procedures for the distribution of associated source

code, in contrast to, for example, Linux distributions, which offer mature procedures

for this purpose.

 ■ Signature procedure of containers to ensure the integrity of the contents is not very

mature yet

A unified position of the developing industry in Germany and internationally is not yet

discernible in this context. There are a number of tools available, but they cannot yet

cover all compliance issues. In order to remain future-proof, capable of action, competi-

tive and guilt-free, container compliance must be viewed with a high degree of attention.

If a company plans to use container-based solutions in a productive operation or to

pass them on to further recipients in a supply chain, the implementation of the follow-

ing recommendations for action is desirable:

 ■ External container images are only obtained from selected sources.
 ■ External container images are to be verified according to own guidelines.
 ■ Derivations of own container images can be reproduced via defined processes.
 ■ Modifications to third-party components are restricted by own guidelines and are

checked by reviews or tools when generating the derivations.
 ■ Active inventory of software components – especially third-party components – to

check against own policies.

The contents of the listed own guidelines are left open here. Ultimately, the objectives

of these guidelines are a matter for the company or result from the regulatory, legal

and contractual framework conditions from the perspective and risk appetite of the

company’s management.

With the current heterogeneous content, existing standards and quality arguments,

we are still a long way from a microservice architecture based on a serverless infra-

structure that bears the predicate compliance-by-design and does justice to society’s

growing understanding of transparency.

In order to remain future-

proof, capable of action,

competitive and guilt-

free, container complian-

ce must be viewed

with a high degree of

attention.

44

Benefits of Open Source Software

3.4.4 Implementation and Management of
Licence Interpretations

The systematic recording of the licences to be applied is followed by the interpretation

of the rights granted and obligations imposed in the licences as well as the administra-

tion of the interpretation. The aim of interpreting the licences is to avoid copyright

infringements as well as to get clarity on whether the licences are compatible with

one’s own intentions. Legal expertise is essential in this activity. The interpretation of

licences, as well as their recording, must be carried out systematically and stored in a

reusable way to avoid accidental errors. The technology used to manage the interpre-

tations can be chosen freely. However, a database-oriented solution makes sense –

especially if the process of recording and deriving the licence conditions to be fulfilled

is to be automated as far as possible for reasons of efficiency.

Existing licence interpretations are to be maintained and, if necessary, adapted to

newly emerging aspects of case law.

3.4.5 Possibilities for implementing licence
interpretations

The interpretation of the licence conditions is followed by the definition of the imple-

mentation of the interpretations. The implementation is usually specific to a concrete

delivery scenario:

In this step, the specifics of the individual products and solutions in which the recorded

open source packages are included in whole or in part, with or without modifications,

must be taken into account. For example, in the case of an existing GUI (Graphical User

Interface), the obligation to include the licence text of the software can simply be

implemented by a button »show licence information« in the main menu. If there is no

GUI, the licence texts can, for example, be provided on the product CD or on a CD

enclosed with the product as text files. It makes sense to define »best practices« for

the concrete implementation and to follow these as far as possible when implement-

ing the licence interpretations. This minimises the effort through a kind of standardisa-

tion and the risk of incorrectly implementing a licence interpretation in a concrete

product. In addition, a company-wide, uniform concept is perceived as a »brand« over

time. As an example on the last point: All products of company A are accompanied by a

CD called »Open Source Software«, which contains all the details and the correspond-

ing source code of the Open Source Software packages supplied.

It makes sense to define »best practices« in the concrete implementation and to follow

these as far as possible in the implementation of the licence interpretations.

It makes sense to define

»best practices« in the

concrete implementation

and to follow these as far

as possible in the imple-

mentation of the licence

interpretations.

45

Benefits of Open Source Software

An efficient method to ensure compliance with the licence conditions for concrete

products and solutions is to treat the licence conditions as requirements that the

individual deliveries must fulfil. For example, the requirement of a licence to include

the licence text with each software delivery is entered as a »mandatory requirement«

of the product in the requirements engineering tool used. The concrete type of imple-

mentation for the respective product is documented and tracked in this tool. The

highest degree of efficiency and completeness is achieved when the licence conditions

(i.e. the result of the activity »performing licence interpretations«) are stored in a

database together with the defined best practices, as recommended above. These are

automatically read out of the database according to the Open Source Software con-

tained in the respective software delivery and entered into the requirements engineer-

ing tool. This type of automation ensures the completeness of the »licence compliance

requirements« per product or solution and their concrete implementation is also

documented in a traceable and verifiable manner. This in turn significantly simplifies

the last activity »verification of implementation options«.

3.4.6 Verification and recording of conversion
to delivery

For quantitative reasons, verifying and recording the implementation of the licence

conditions to be fulfilled is almost only possible with tool support.

Even in small DSL routers or DVD players, entire Linux distributions with dozens of

open source packages are sometimes used. In some language ecosystems, the number

of modules used can be several thousand. Due to this sheer quantity alone, it is no

longer possible to check whether all licence conditions are being complied with with-

out software support. As described above, all licence management activities should be

automated as far as possible. Handling lists and tables in which results, interpretations

and conversions have to be entered and maintained manually will inevitably lead to

errors, even with small deliveries.

Licence management is an activity that accompanies the deployment of software, no

matter what type of software it is – be it Open Source Software or proprietary soft-

ware. It is important that licence management is done for each package and each

release of the packages that is deployed. This is because the type and quantity of

licences applied in an Open Source Software package may be different in each release

from its predecessor. Attention must also be paid to changing licence versions, as this

can entail new licence obligations as well as new rights.

Licence management is

an activity that accompa-

nies the use of software,

no matter what type of

software it is – be it

Open Source Software or

proprietary software.

46

4 Creating
Open Source Software

Creating Open Source Software

47

Creating Open Source Software

No obligation to contribute to Open Source Software arises from open source licences

and, depending on the licence, it is not even necessary to publish changes. Neverthe-

less, intensive use of Open Source Software will almost inevitably lead to the issue of

contribution, as there are a number of very good economic and technical reasons to

actively participate in open source:

 ■ Interaction with the open source community and direct contact with open source

developers is an excellent opportunity for feedback and learning. This leads to

higher software quality and improved ability to provide support for Open Source

Software in use.

 ■ In the medium term, a contribution of one’s own changes reduces maintenance

costs, since after the contribution the change becomes part of the Open Source

Software and is thus automatically included in subsequent versions. Without a

contribution, the change must be painstakingly updated and, if necessary, adapted

with each update.

 ■ Influence on and participation in open source projects can usually only be achieved

through active collaboration and contribution of code.

 ■ The sustainability of Open Source Software in use depends crucially on sufficient

user participation in its maintenance and further development. The resilience of

strategically used software can be improved through participation.

 ■ In many cases, there is also a moral obligation not only to take, but also to give.

Organisations that fulfil this responsibility and not only use Open Source Software,

but also contribute to it, feel this in the form of an enhanced reputation, among

other things as employers for the talents they are courting.

 ■ Strategic engagement in and with open source projects can establish standards and

shape markets.

 ■ Open source models can be an effective way to improve collaboration and contact

with customers, partners and suppliers.

 ■ Since open source licences guarantee non-discriminatory access to software, this

can serve as a basis for consortial software development without hindering or

unilaterally influencing the market and thus creating antitrust or other regulatory

problems

 ■ For an increasing number of software developers, the opportunity to participate in

open source projects can be a strong argument determining the attractiveness of

an employer.

The sustainability of

Open Source Software in

use depends crucially on

sufficient users also

participating in its main-

tenance and further

development.

48

Creating Open Source Software

A higher commitment to contributions and even the opening of new open source

projects arises when these contributions are to support existing or new business

models. For more information, see ↗ Chapter 5, where different archetypes of business

models are presented.

The topic of open source contributions thus forms a broad field in which there are

several aspects to consider. In the following, we will look at the topic of open source

project governance, i.e. the management processes around an open source project, as

well as other basics, such as project types, the different ways to contribute to an open

source project, and typical tooling around communication and development in open

source projects.

49

Creating Open Source Software

4.1 Open Source Governance

As a rule, open source projects are not unrestricted source code repositories in which

anyone can change software at will. In principle, an open source licence guarantees

that the software can be used freely and adapted to one’s own particularities. Howev-

er, it does not define any right to incorporate one’s own changes into the original

project. For the further development of open source projects, therefore, quite strict

review and decision-making processes are often used, by means of which the quality of

the software is permanently maintained. These processes, as well as the general

decision-making and control mechanisms of an open source project, are summarised

under the term »open source governance«.

4.1.1 Contribution pyramid

The community of an open source project typically represents a pyramid. At the base

of this pyramid are the users of the software, especially those who actively participate

in the community, for example in the form of bug reports and feature requests or

through contributions to mailing lists. In the pyramid directly above are contributors.

These are members of the community who propose their own code contributions as

contributions. They usually have no write access to the repository. Their contributions

are reviewed by the project’s maintainers and added to the repository once the quality

typical for the project has been achieved.

At the top of the pyramid are the maintainers or committers of a project. In this role, a

developer has a higher level of responsibility. This manifests itself, for example, in the

fact that he or she can accept contributions. This right is often expressed through

write access to the repository. At this level, control over the software, its quality and

functionality takes place. In more complex projects, this level can be extended even

further. One well-known example is the Linux kernel, in which there are subsystem

maintainers at several levels and ultimately, with Linus Torvalds, only a single develop-

er takes over the patches in the project repository. Another example is Eclipse Founda-

tion projects, in which there is typically another project lead who has additional rights

in the context of the Eclipse Foundation development process; for example, he or she

can trigger the release process or initiate the formal election of committers or project

leads.

50

Creating Open Source Software

4.1.2 Projects with informal governance

Such a contribution pyramid can arise chaotically or in a self- organised way. Many

open source projects are started by one person as the inventor. At least in the first

growth, such a person will keep the decisive role at the top of the project. In some

projects, the person remains in this role as a benevolent dictator for life.

In long-lasting and growing projects, however, there are often generational changes. In

these cases, new people come to the top who primarily distinguish themselves

through their commitment and the extent of their contribution.

Such projects usually manage very well and for a long time without formal govern-

ance. A public source code repository and a mailing list suffice as a constituent ele-

ment.

In terms of participation, these projects certainly pose the greatest challenge from a

company perspective. In order to gain any acceptance at all and possibly later influence

on such a project, competence and willingness to commit to the project on a long-term

basis must first be demonstrated in practice. Because this always depends on individu-

al persons in informally organised projects, this involves entrepreneurial risks.

The lack of legal unity and informal governance also makes a legal assessment of such

a project difficult and thus the risk assessment of a contribution uncertain. For exam-

ple, potential antitrust issues arise when collaborating with other companies in an

unregulated environment.

Finally, projects of this type naturally lack formal arrangements for conflict and crisis.

This need not be a problem, but it can have a negative impact on the longevity and

dynamics of a project under certain circumstances.

4.1.3 Charter-based open source projects

Especially in the industrial context, there is often a need for more formal governance.

For example, in vertical ecosystems, there are a number of projects and project fami-

lies that define a form of membership through a charter. The idea of this approach is to

ensure the commitment of the organisations interested in the project by linking the

membership with an annual contribution or a commitment to provide development

resources.Thus, the project has a base budget with which to drive development.

51

Creating Open Source Software

Membership is typically accompanied by control rights. Steering committees deter-

mine the use of the project budget and define working groups in which specific issues

are advanced. Members have the right to participate in the various committees and

thus have greater control over the project.

In this case, however, the projects are also open source projects, which means that in

principle everyone has the right to participate in the form of contributions and can use

the project freely according to the chosen licence. Often the project charters also

explicitly open up possibilities to obtain further rights and influence through active

participation in the project. In general, however, the strategic question for contribu-

tions to projects of this type is whether a possibly desired influence makes it necessary

to become a member of the project. Only when the planned contributions exceed

simple bug fixes and minimal patches is membership quickly advisable.

4.1.4 Foundation-based open source projects

From a series of successful projects, individual foundations have emerged from the

previous model of control by a non-profit enterprise and have expanded their scope

over the years. Examples of this are the Linux, Eclipse and Apache Foundations. These

unite a large number of open source projects from different areas. They also often

define a standardised governance framework that is established and facilitates the

creation of a new project. Instead of setting up a completely new governance, for

example in the form of an association, as in the previous example, established process-

es can be used in the foundations and complete governance parts can be outsourced

through the foundation’s support for the processes.

For a contributing company, this construct is certainly the most comfortable. The

governance structure is standardised and a contribution to several projects of a foun-

dation only requires a comprehensive legal review for the first project. The quality

standards of the foundations ensure high process and software quality, so that a

long-term commitment to an open source project typically entails low risks.

4.1.5 Openness of governance models

A company or a manufacturer that decides to place a software project under an open

source licence obviously gives up a significant part of the control over its product.

Even if we see the dynamics with which existing open source projects are developing

and the extent to which innovation is emerging as Open Source Software, this loss of

control is perhaps perceived as a particular risk from a business perspective. It is there-

fore obvious to secure control over the open source project by constructing a govern-

ance model.

A long-term commitment

to an open source project

typically entails low risks.

52

Creating Open Source Software

Unlike the open source licences, which follow an open source definition that is tested

and recognised by the OSI, there are no fixed rules yet for the governance models.

Therefore, before participating in an existing project, it should be checked, if necessary,

whether the governance rules actually and sufficiently enable the character of a com-

munity-oriented joint development and cooperation. In the interest of creating a

strong community process, this applies equally to the formulation of one’s own rules

when founding a new project.

Under the catchphrase »open governance«27, 28 criteria can be identified that a project

must fulfil in order for the openness determined for the code by the licence to be

reflected in the governance model. In particular, it is open to new participants and it is

oriented towards cooperation and the creative process.

An open governance model addresses issues such as

 ■ Distributed or neutral ownership of the rights to use contributed code
 ■ Neutral ownership of the infrastructure, such as the internet domain of the open

source project, but also aspects such as naming and image rights to project

resources.
 ■ Licensing of project branding for, for example, proprietary products
 ■ Transparency regarding

 ■ Decision-making processes
 ■ Code of Conduct and process for compliance
 ■ Management of the project budget, should one be levied (see charter-based

open source projects).
 ■ Process for the appointment/retirement of maintainers/committers
 ■ Roadmap process
 ■ Release management

Open project governance is a quality feature that ensures that individual community

participants have a clearly defined influence on the project and that the processes in

the project are transparent for all involved. Excessive influence should thus be avoided.

27 Meijer, Lips, Chen: Open Governance, ↗ https://www.frontiersin.org/articles/10.3389/frsc.2019.00003
28 See, for example, open governance models in the context of the Cloud Native Computing Foundation (CNCF):

↗ https://opengovernance.dev/

Open project governance

is a quality feature.

https://www.frontiersin.org/articles/10.3389/frsc.2019.00003
 https://opengovernance.dev/

53

Creating Open Source Software

4.1.6 Split of open source projects

The open source licences guarantee all users and thus also all developers the freedom

to offer and distribute their own versions of the software. In the event that a major

contribution is not accepted by the management structure of an existing project

mentioned above, this means that the modified software can be continued inde-

pendently in a split-off project.

But this step needs to be well thought out. Splitting a community can stimulate inno-

vation and bring new dynamism to a possibly sluggish project. This was the case, for

example, with the 386 community’s split from Andrew Tanenbaum’s Minix project.

This gave rise to the Linux kernel.

On the other hand, such a split may also mean the disconnection of integration and

security in the original project. The backporting and unification of such patches from

the original project are possible to a certain extent, but they mean considerable addi-

tional work. Also, each split brings not inconsiderable uncertainty and friction losses.

4.1.7 Handling IP and copyrights

Another aspect of project governance is the handling of IP and copyright rights of the

contributors. The IP rights, for example patents affected by the source code, are usually

regulated by the open source licence used. Some licences have special patent clauses

that usually grant a royalty-free right to use the patents involved. This is a relevant

aspect when deciding to contribute to a project.

If a contribution concerns own patents, it is usually desirable to use a project that uses

a licence with a patent clause. An unclear patent situation increases the risk of using

the software and thus reduces the attractiveness of the project.

Formally, unrestricted use can be regulated by a Contributor Licence Agreement (CLA)

or as an actual transfer of copyright to the entity by a Copyright Transfer Agreement.

There are many examples for the concrete design of a CLA29 in which, among other

things, re-licensing as a proprietary product can be regulated.

29 ↗ https://en.wikipedia.org/wiki/Contributor_License_Agreement

Splitting up a community

can invigorate innovation

and bring new dynamism

to a potentially cumber-

some project.

An unresolved patent

situation increases the

risk when using the soft-

ware and thus reduces

he attractiveness of the

project.

https://en.wikipedia.org/wiki/Contributor_License_Agreement

54

Creating Open Source Software

4.1.7.1 Assignment of »copyright«:
Individual or Entity

At least in the projects with informal governance, the contributor retains all copyrights.

The code is thus made up of components with different owners, which is made usable

by others through the common open source licence. One advantage of this approach is

a lower barrier to entry, since in the best case no further arrangements need to be

made in addition to the open source licence. Thus, the examination of a possible contri-

bution is easier and less restricted. In addition, the spectrum of owners promotes the

independence of the project; it becomes more difficult for individuals to dominate the

project. The disadvantages of this approach are already described above in the section

on informal governance. In particular, the licence can hardly be changed. Even jumping

to a newer version of an open source licence is only possible with the consent of all

copyright holders, unless explicitly regulated at an early stage. This is virtually impossi-

ble for a successful project after a few years.

In a written governance model, in contrast, it can be agreed that a contributor trans-

fers the rights of use defined in copyright law to an entity behind the project for its

free use (unrestricted republishing rights). Such an entity can be an individual company

or a legal construct, such as a foundation or an association. Here there is a separation

between the licence for incoming contributions (inbound) and the licence for the

finished software (outbound). The advantage here is that the copyright belongs to a

single strong entity (such as the Free Software Foundation), which can defend it

against infringements and attacks if necessary. Even basic changes, such as updating

the licence to a newer version, are no problem with this. A disadvantage of this proce-

dure can arise from the fact that there is a dominant faction that can determine the

project and the contributions of the contributor. This poses a risk, especially in compa-

ny-dominated projects. A previously free software can also be transformed into a

proprietary product here.

4.1.7.2 Protection against third-party »copyright«

An open source project releases the use of the software it contains under the open

source licence. A user must therefore be able to rely on the fact that all copyright

holders of the project have also agreed to the use of their copyright under the licence.

Incorrectly included content from a third party copyright holder can result in at least

the parts containing that copyright not being usable. It is therefore in the interest of

the open source project to ensure that each contributor only contributes content for

which she owns the copyright or has an appropriate licence. This can be, for example,

content from another open source project that has been released under a compatible

licence.

55

Creating Open Source Software

To maximise the protection of these aspects, some open source projects make use of

special agreements such as the Contributor Licence Agreement (CLA) mentioned

above. Alternatively, there are lightweight mechanisms such as a Developer Certificate

of Origin (DCO), in which the author of the contribution merely declares ownership or

the right to redistribute the material. In the simplest case, the »inbound = outbound«

rule applies, which ultimately accepts contributions based on the chosen open source

licence; no further regulation takes place.

56

Creating Open Source Software

4.2 How can businesses participate
in open source projects/
Contributions

The possibilities for active participation in open source development are as diverse as

the use cases of software as a whole. Basically, participation includes all activities that

go beyond the mere consumption of the software.

 ■ This starts with the support of other users, for example on a mailing list.
 ■ Feedback to the developers about bugs or change requests
 ■ Qualified error messages possibly even with patches for correction
 ■ Testing new versions
 ■ Creation, extension and translation of documentation
 ■ Packaging the software for specific distributions
 ■ Implementing new methods, modules, features, etc.
 ■ Review of code from other contributors
 ■ up to the comprehensive responsibility for the parts of the project and initiating
 ■ and driving new open source projects

All open source projects are at least partially interested in active participation by

communities. Successful projects therefore show themselves to be inviting and open,

even if they primarily pursue a company-driven development model.

At the same time, however, successful open source projects usually have a manage-

ment and control structure and there are guidelines for the form and content of the

collaboration. Such a structure can be determined from a company-driven develop-

ment model as described above.

However, it may also be democratically constituted within the framework of a founda-

tion, for example, or it may have grown informally in the form of a meritocracy. Espe-

cially in the projects described above with informal governance, it is advisable to seek

agreement with the project before making and contributing larger contributions.

All open source projects

are at least partially

interested in active

participation by the

communities.

57

Creating Open Source Software

4.2.1 Open Source Participation from an
Economic Perspective

In order to avoid the above-mentioned additional work involved in maintaining a

separate branch of an open source project, there are good economic reasons for also

making substantial contributions to the original project and thus making it available to

the general public.

Even small contributions have an economic benefit for the contributing companies.

Feedback to the developers serves to motivate them and, at best, can steer the devel-

opment in a desired direction.

By contributing patches to the upstream community, not only is the effort of maintain-

ing a separate software branch saved, into which the upstream patches then have to

be ported back. Often, the ideas realised in such a contribution are also taken up by the

community and developed further independently. In the ideal case, a small impulse is

enough to initiate major changes.

There are other economically calculable values and benefits in participating in open

source projects.

 ■ In the corporate »beauty contest« for the best talent, active participation in open

source projects and an open source contribution policy in the company is an attrac-

tive differentiator.

 ■ Supporting other users can underline one’s own competence as a service provider in

the domain of an open source application.

 ■ Open source reference implementations can be used to set standards, create inter-

operability and generate trust between otherwise competing parties.

In our complex global economy, the constantly changing information and data proces-

sing requirements of the companies involved cannot be adequately met either by

standard software from traditional providers or by in-house development.

Digital transformation and thus future viability can only succeed

through collaboration and cooperation with open source methodology

and Open Source Software.

58

Creating Open Source Software

4.3 Collaboration Tooling

Open source development is characterised by the cooperation of otherwise organisa-

tionally unconnected individuals over large spatial and thus temporal distances. In this

setting, technical collaboration tools play an important role. Giving concrete examples

or even recommendations for tools is beyond the scope of this guide. Every project

puts together its own toolbox. Nevertheless, we would like to share a few basic consid-

erations and experiences here.

4.3.1 Communication

Asynchronous and at the same time fluid and comprehensible communication is

essential for collaboration. The larger and more successful a project becomes, the more

participants need to be involved in communication, often across multiple time zones.

Email (especially in the form of mailing lists) and chat are used for communication as a

matter of course. Typically, the relevant open source projects also have a website

(homepage) on which the project presents itself and offers further information,

for example in the form of a wiki, a blog or a discussion forum for users.

This is important for the planning of a new open source project, as the effort required,

for example, for the moderation of a mailing list or the maintenance of a project page

is not insignificant, but is often forgotten in the initial estimate.

Asynchronous and at the

same time fluid and

comprehensible commu-

nication is essential for

collaboration.

59

Creating Open Source Software

4.3.2 Tool chain

Since open source development is essentially about software source code, the version

control system (VCS) plays a central role. In addition to the traceability and retraceabili-

ty of changes, this also involves the coordination of parallel development threads

(branch, fork, merge, etc.). In addition to historically existing VCSs such as CVS, RCS,

SCCS and Subversion (SVN), there are a large number of proprietary offerings and there

is Git.

The choice of VCS is relevant insofar as a change is typically accompanied by the loss of

metadata and history. For current and especially for new open source projects, Git is

probably the general standard as a tool and data format. Git is a distributed system

and there are several well-established platforms that offer central Git servers for open

source projects free of charge on the internet.

Automation and integration: Modern software development uses a variety of tools,

methods and integrated environments with which operational elements of the crea-

tive process can be simplified or completely automated.

Examples of such tools are IDE, Module Library, Artefact Repository, Build Pipeline, Test

Automation and many more.

The concrete design of such a development environment depends, among other

things, on the chosen programming language and the deployment and operating

format of the resulting software. For a classically compiled C program, the environment

looks different than for a J2E Java application or for a containerised Go microservice.

Powerful open source tools are available for all tasks and areas. A deeper look at the

many options for designing such development environments is beyond the scope of

this guide.

For each individual open source project, it makes sense in any case to describe the

prototypical development environment together with the coding standards.

Platforms: When selecting a suitable platform, it is also a question of role and rights

management (commit, review + merge, comment, etc.), the management of issues, the

automation of workflow and the integration into various development environments.

With control over these functions comes structural power over essential processes in

the project. Tools can support the social character of interaction, they cannot replace it.

The use of even free offers for central source code repositories and version control

systems has a price. This means that the question of who pays this price and how

sustainable and secure this business model is is also part of the considerations for

selecting the appropriate tool.

Tools can support the

social character of

interaction, they cannot

replace it.

60

Creating Open Source Software

4.3.3 Creativity

Beyond the purposes mentioned, there is a wide field of technology to support creative

collaboration. A good overview of creative methods for teams can be found in the

↗ Open Practice Library.

And there are tools like diagram editors, whiteboards, Kanban boards, ↗ Liquid Democ-

racy to apply these methods and support the creative process.

http://Tools can support the social character of interaction, they cannot
replace it.
https://liqd.net/de/
https://liqd.net/de/

61

Creating Open Source Software

4.4 Conclusion

The models and ways of contributing shown here come from very different situations

and are driven by a wide variety of intentions and motives.

Open Source Software is used everywhere: in smartphones, as web services or as

infrastructure in the cloud. Even in proprietary software products, some components,

libraries, tools or frameworks from the open source world are almost always used. In

accordance with the image of the contribution pyramid described above, all companies

should at least become aware of their role as users of Open Source Software. Actively

shaping this role and, for example, explicitly allowing active participation in communi-

ties with experience reports, bug reports or small patches is a first step.

It is also important as a user to know and exercise the active rights of Open Source

Software. Where much of the underlying technology and components are already

available as open source in proprietary software today, it may make sense to actively

engage in a collaborative development process and increase the portfolio of open

source solutions.

When creating a new open source project, as described above, there are many degrees

of freedom that, if chosen correctly, can have a strong influence on the success of the

project. Especially a well- chosen project governance, for example the use of a proven

open governance approach or a methodology specified by a foundation, makes it

easier for interested companies to participate in a project. This results from the fact

that the mechanisms are established and proven. The risks are thus much easier to

assess. In addition, they are known to the reviewing lawyers, and may even have

already been reviewed. This reduces the risk of participating in the project and makes it

attractive.

It is also important as a

user to know and exerci-

se the active rights of

Open Source Software.

62

5 Business models
around
Open Source Software

Business models around Open Source Software

63

Business models around Open Source Software

A basic principle of Open Source Software is that no licence fees may be charged for its

use. This condition is anchored in the OSI’s open source definition. Beyond that, howev-

er – and this is the crucial point – any remuneration agreement for any conceivable

service for and with Open Source Software is permissible. Software that may not be

used commercially by licence is not Open Source Software according to the definition

of the Open Source Initiative (OSI).

Whatever business model one comes up with, one aspect distinguishes the commer-

cial use of Open Source Software: Only indirectly can a unique selling proposition be

built up with it. The accessibility of Open Source Software and the freedom rights

associated with it facilitate the emergence of alternatives. Every person who works

with Open Source Software for business purposes should provide the software on

which his or her service is based to his or her customers in the full knowledge that he

or she as a supplier – in terms of the software – is easily replaceable. Accordingly, the

added value is provided in awareness of the suppliers own special competence and the

unique selling proposition is formed from this. The use of Open Source Software can

be a sales-promoting advantage: open source services give customers a greater degree

of freedom in their relationship with their supplier. Seen in this light, Open Source Soft-

ware has always been and still is a special instrument in a market economy.

Open Source Software is therefore not a business model in itself, but »only« a special,

cooperative development method. Thus, the development of the scene is accompanied

throughout by the question of what exactly such business models can look like with an

orientation towards open source. For a long time, for example, companies doubted

whether professional commercial support was even possible for »free« software. It

was also questionable at first whether it could make economic sense at all to support

Open Source Software beyond pure use in the form of development contracts or

through one’s own participation. Conversely, open source communities doubted

whether companies would abide by the rules of the game of free software and wheth-

er commercial exploitation would be compatible with the spirit of the communities.

There is no longer any question of this today. Open Source Software is an integral part

of many commercial products and, especially in the area of cloud services, open source

is the only way to implement the scalability that necessarily characterises such services

in an economically sensible way. Spectacular takeovers and valuations of companies

that base their business model primarily on the development of Open Source Software

confirm the economic importance of the concept of open source.

The time when open source was a special topic and presented at separate trade fairs,

for example, is over. Today, open source is implicitly or explicitly part of all areas of the

economy where software is relevant. This is also reflected in the organisation in associ-

ations: For example, there is the Open Source Business Alliance (OSBA)30 and also

within Bitkom e.V. there is the established Open Source working group31.

30 cf. ↗ https://www.osb-alliance.de/
31 cf. ↗ https://www.bitkom.org/Bitkom/Organisation/Gremien/Open- Source.html

The time when open

source was a special topic

and was presented at

eparate trade fairs, for

example, is over.

https://www.osb-alliance.de/
https://www.bitkom.org/Bitkom/Organisation/Gremien/Open- Source.html

64

Business models around Open Source Software

The existing business models can be classified in terms of whether the business model

uses the Open Source Software as a means to achieve an independent business pur-

pose (business models with Open Source Software) or whether the business model is

built directly around the Open Source Software (business models for Open Source

Software). Following this classification, examples of business models that can be

observed on the market are described in the sub-chapters. This list does not claim to be

complete, but gives a comprehensive picture of the mainly observable models.

65

Business models around Open Source Software

5.1 Business models with
Open Source Software

In these business models, Open Source Software is used to develop a product or

provide a service. The Open Source Software fulfils a means to an end here and is often

only consumed. However, many companies also use the mechanism to specifically

develop non-competitive areas of their software stack more efficiently through coop-

eration with other companies or to improve quality through a broader user base.

5.1.1 Services with Open Source Software

In this model, services are offered that are provided through the use of Open Source

Software, also known as software-as-a-service (SaaS). Social networks, web shops,

search engines, cloud providers, they are all operated using Open Source Software,

sometimes on a massive scale. Customers pay for the operation of the service, or the

services are financed through business models such as the sale of advertising. Whether

this is done with open-source or proprietary software is irrelevant to the actual service.

Open Source Software flows into the business model as a favourable cost factor.

Last but not least, the availability of Open Source Software has contributed massively

to offering start-ups the opportunity to access many highly powerful software stacks

with minimal investment and to realise innovative services at an unprecedented

speed.

5.1.2 Open Source Software as a Service

A special form of service with Open Source Software is the operation of Open Source

Software as a service on the Internet. Here, a distinction can be made between opera-

tion by the manufacturer or by third parties.

Operation by the manufacturer is, for example, Open Source Software that is made

available or mainly developed by one company. In addition to the freely available

software, however, this company also offers an internet service that releases users

from the installation and maintenance of the software and makes it easily available to

them.

66

Business models around Open Source Software

Examples exist in the area of databases or virtual communication platforms and,

for example, in projects of the Cloud Native Computing Foundation32.

Especially for Open Source Software, which has achieved a high level of distribution

due to its free availability, offering it as a service is often an attractive form of generat-

ing income that finances the maintenance and further development of the software.

However, this model then falls more into the category of »business models for Open

Source Software«.

In third-party operation, the software is provided by a company that is not the primary

or sole developer. An example of this is the operation of services by cloud providers.

There has been some controversy around this model in recent years, as some manufac-

turers have seen themselves at a disadvantage to the usually much larger cloud provid-

ers and have tried to compensate for this disadvantage by changing their licensing.

The licences to which these vendors have switched typically exclude use by competi-

tors in the operation of the software and are thus no longer open source licences.

Open source licences require non-discriminatory usability, even by competitors. One must

also note that the major cloud providers are among the largest open source contributors.33

5.1.3 Products with Open Source Software

Comparable to services, Open Source Software can of course also incorporated into the

development of products. Here, open source components are built into the product

and often represent a large share of the product’s software. This is the classic use case,

Open Source Software is used in a software context and redistributed with the prod-

uct. An obvious indication of the relevance of this model are the lists of open source

licences that can be found in many configuration menus or manuals of products such

as televisions, routers, computer games and the like.

5.1.4 Open Source Software as enabler
for other business models

In this business model, Open Source Software is used to facilitate the use of a service

or the delivery of another business purpose. Companies with this model create quite

extensive Open Source Software. This can be, for example, an operating system for

smartphones, a browser, or development tools. The widespread use of this software

can then support such different business models as the collection of data for advertis-

ing or the increased use of provided, fee- based cloud services. The investment in Open

Source Software therefore only indirectly serves the business purpose, but offers

control points by means of which one’s own business model can be advanced.

32 see many CNCF Cloud Native Interactive Landscape projects, cf. ↗ https://landscape.cncf.io/
33 cf. ↗ https://opensourceindex.io/

Open source licences

require non-discriminato-

ry usability, also by

competitors.

https://landscape.cncf.io/
https://opensourceindex.io/

67

Business models around Open Source Software

5.2 Risk assessment with
regard to the use of
Open Source Software

If we look at the business models described, the use of Open Source Software made

available is in the foreground. A provider benefits from the development of the open

source community, but also relies to a large extent on the community developing the

software in the intended sense. This represents a risk that must be assessed by the

consuming company. Particularly in the case of a large dependence on individual open

source components, a consuming company must install measures to control the risk.

On the other hand, today’s market dynamics, which have also arisen due to the open

source mechanism, force a rethinking of the strategy of how non-competitive parts of

one’s own product or service portfolio are developed and made available over the

entire life cycle. The risk then is that sticking too long to proprietary in-house develop-

ment ties up too many developers and the company’s speed of innovation suffers. Risk

control involves increased investment in Open Source Software, for example by partici-

pating in or even founding open source communities.

If a company wants to participate more in open source projects, two options are

available. One is to commission third parties who then actively participate in open

source communities. The matching business models are described in the next subchap-

ter. This section describes the options for direct participation in open source projects.

At this point it is useful to distinguish between more general platform software and

vertical software. Platform software is typically not domain-specific, but of a general

nature. Operating systems that are needed to operate a device but do not provide any

functionality that is part of the company’s core competence serve as an example.

In contrast, vertical Open Source Software as a product or service component is about

developing typical but non-competitive software in a specific market in a joint collabo-

ration of market participants. Examples of this form are the Networking Working

Group of the Linux Foundation34 in the field of telecommunications networks or the

Academy Software Foundation35 in the field of motion pictures.

34 cf. ↗ https://www.lfnetworking.org
35 cf. ↗ https://www.aswf.io

Especially in the case of a

large dependency on

individual open source

components, a consu-

ming company must

install risk control mea-

sures.

 https://www.lfnetworking.org
https://www.aswf.io

68

Business models around Open Source Software

5.2.1 Participation in platform
Open Source Software

For general software projects, a typical strategy is to participate sporadically at first.

This can take the form of bug fixing, smaller feature contributions or just community

activities such as bug reporting and participation in discussions. Depending on the risk

assessment, the aim here is usually to fix urgent defects in the software from the

perspective of one’s own use. However, the example of operating systems, and here in

particular the example of Linux, shows very well that participation can quickly go

deeper. For companies that provide their own hardware such as sensors or actuators,

there is a need to make their hardware usable for Linux by means of drivers. In Linux,

drivers are part of the Linux kernel so that it does not become incompatible when the

kernel is further developed and is easily available to the users of the hardware. Conse-

quently, it is obvious for hardware manufacturers to contribute software to the Linux

kernel.

For most companies, this form of collaboration with open source communities is

driven by getting involved in established ecosystems and supporting existing stand-

ardisation through the Open Source Software. Rarely is it about driving new standardi-

sation through Open Source Software at this general level. But this is not far-fetched

either, as an example Zephyr36, an operating system for low-resource devices, which

has only emerged from industry collaboration in recent years and is supported by a

large number of companies from different sectors.

5.2.2 Participation in vertical
open source projects

For many companies, this participation will be an interesting strategic model to release

development resources from non-competitive software parts. This enables them to

concentrate on diversifying software parts and thus strengthen their market position.

The idea of vertical open source projects is that software that is currently developed

proprietarily because it is necessary for the operation of the business model must also

be provided in this or a slightly modified form by other market participants. In this

case, there is the potential to jointly develop these software components in coopera-

tion with other market participants and in this way standardise them for the industry.

Through joint development, one’s own investment in the software can be reduced in

the medium term and thus the desired effect of releasing developers can be achieved.

36 cf. ↗ https://www.zephyrproject.org

https://www.zephyrproject.org

69

Business models around Open Source Software

The examples mentioned above show very well the motivation for cooperation. In the

telecommunications sector, it is about a highly reliable provision of the network.

The quality of the hardware and software used is more important than extensive

diversification possibilities, ideal for cooperation in the open source field. Even in the

motion picture environment, diversification comes from the creativity of those

involved. The provision of the tools is more of an obstacle because they mean a high

investment that is often hardly affordable for the companies involved, but on the other

hand the efficiency of usability is in the foreground, i.e. the efficiency of the creatives.

70

Business models around Open Source Software

5.3 Services for
Open Source Software

The use of Open Source Software is contrasted with business models in which services

for the adequate operation of Open Source Software are remunerated. The companies

offering these services do not necessarily have to develop Open Source Software them-

selves. For providers of their own Open Source Software (application providers), addi-

tional services can be a secondary profit model. It can be observed that a wide variety

of billing metrics are generally used in these business models. Examples are contingent

billing or usage- based subscriptions. The services can be typified as follows:

5.3.1 Support

This includes both technical and non-technical customer support, usually realised

through a helpdesk or call centre. Support service providers may specialise in the

technical aspects of installing and integrating new software into existing systems, but

may also provide assistance with day-to-day application problems.

Support contracts are often made that specify different support levels, consulting

availability, and response times. Support levels include first, second and third level

support, each level representing a further escalation within the system. There is typi-

cally also variation in billing. The range goes from individual invoicing of support

requests to subscriptions that allow support requests for the agreed contract period.

5.3.2 Development

In the case of customised contract development, the service provider integrates cer-

tain functions or design features into the Open Source Software. In this way, for exam-

ple, independent applications are created on the basis of an already existing software

version, which are tailored to the client. Such an offer for Open Source Software also

makes it possible to realise special features (earlier) that are needed for a service with

Open Source Software independently of, for example, a community-driven roadmap.

Often, but not necessarily, these custom developments are published under an open

source licence and can find access into the original open source project if there is

sufficient interest.

71

Business models around Open Source Software

In relation to the »Open Source Software« model, the service may not only consist of

the pure development of the software, but also of organising contact with the open

source community, cooperation or the back-publication of development statuses.

5.3.3 Operation and provisioning

In contrast to the Open Source Software-as-a-service model, this business model is

about preparing the Open Source Software for a specific customer in such a way that

the customer can use the software directly. This includes services such as the opera-

tion of a service on customer-specific hardware, integration of the software, and

provisioning using the customer-specific software management mechanism to make

the software available on the customer’s computers. In this model, the configuration

of the software for the customer is also done by the suppliers. This model is typically

combined with other models from this subchapter.

5.3.4 Maintenance

Maintenance of software in use is usually limited to a certain period of time (e.g. one

year) and to a defined scope of services (such as the installation of regular security

updates). Software that is no longer actively developed is often still used in complex IT

architectures and must be maintained. Even after the official discontinuation of the

open source project, these tasks can be taken over by third-party providers in order to

keep a software or infrastructure running and to extend the period of use.

5.3.5 Consulting

Consultancy services can cover all points of the life cycle, for example studies, analyses

and conceptions. They are aimed both at the phase before the introduction of soft-

ware (such as selection and evaluation or tendering) and at accompanying it in order to

successfully shape the transition period as well as its later use and to adapt corporate

processes (for example, creation and implementation of a security concept). There are

also consultants who support companies in their own software projects. This can be

useful when Open Source Software is to be published for the first time and when

dealing with open source communities or licensing conditions.

72

Business models around Open Source Software

5.3.6 Certification

Another business model is based on the fact that Open Source Software usually comes

without guarantees. As Open Source Software moves into more and more areas,

secondary properties such as safety or security become more important. In domains

such as the automotive industry or aviation, there are ISO standards whose compliance

must be proven by the software in order to obtain approval for the operation of the

product including its software.

In this business model, services are offered that carry out a qualification of the Open

Source Software according to one of the ISO standards for a specific use case. This

certification enables the usability of Open Source Software in corresponding areas. As

an example at this point, the ELISA Project of the Linux Foundation37 should be men-

tioned, which is about the use of Linux in safety-critical applications. This project is

about processes and methods to enable such use. This subsequently forms the possi-

bility of offering certification services on the basis of the standardised processes.

5.3.7 Training

Training courses complete the offer around Open Source Software. Numerous provid-

ers – mainly small and medium-sized enterprises (SMEs) or individuals – have special-

ised in offering a wide range of courses and certifications. The target group includes

users as well as administrators and programmers. Companies can train their employ-

ees in a targeted and professionally supervised manner and thus increase their internal

know-how. Large Open Source Software providers also include training courses in their

repertoire: in this way, they disseminate and broaden knowledge about their open

source offerings and at the same time offer service to customers.

5.3.8 Dual licensing

In principle, there are many variants of dual licensing38. In this chapter, only the combi-

nation of open source and proprietary licences will be considered. In this case, software

is made available under a typically rather restrictive open source licence. If the users of

the software cannot or do not want to use it under the conditions of the open source

licence, they can acquire the necessary rights of use in a proprietary version for a fee.

This can make sense for both parties: The software customer does not have to fulfil

the open source obligations normally associated with the software, for example a

37 cf. ↗ https://elisa.tech
38 In principle, this type of licensing also exists purely internally within open source: In this case, the developers of a software

are interested in ensuring special security with regard to licence compatibility through multiple licensing under different
open source ↗ licences.

As Open Source Software

penetrates more and

more areas, secondary

properties such as safety

or security become more

important.

 https://elisa.tech
C:\github\workspace\html2pdf12-0.html#fnref38

73

Business models around Open Source Software

copyleft effect. The software producer, on the other hand, can charge the users directly

for special features whose development it cannot cover through the sale of services.

A special case of dual licensing is the open core model. Here, the complete software is

not made available under an open source or proprietary licence, depending on the

version, but part of the software is distributed under an OSI-certified open source

licence and another part under a proprietary licence.

Often, a generally usable basic version is available as Open Source Software and

additional components, for example for integration into an enterprise environment,

can be acquired as proprietary software against payment of licence fees. One chal-

lenge of this model is that the decision as to which component goes into which version

is often not an easy one and, as a matter of principle, puts the other user group at a

disadvantage.

74

Business models around Open Source Software

5.4 Further models

In addition to the »classic« business models described above, there are a large number

of other models, of which we will briefly highlight only a small number here.

5.4.1 Donation-based financing model

Many open source developers work on a voluntary basis and do not create their soft-

ware for a company or in any other business context, but as a voluntary service. The

motivation for this can be, for example, curiosity, learning, reputation, fun in experi-

menting or involvement in a community.

Some users would also like to make a monetary contribution to such volunteers.

Especially in projects that have become more widespread and are also used commer-

cially, it may also be in the interest of companies that use the software to enable more

sustainable development through financial support.

A donation-based funding model is a good way to do this. This can be done, for exam-

ple, through a foundation that acts as a financial proxy for a volunteer community, or

through platforms that allow donations to be made to specific projects or developers.

There are now many variants of this, be it crowd-funding, subscription or integrated

into a code-hosting platform.

5.4.2 Foundation Model

The large foundations offer a special cooperation model. Through their legal form and

policies, they enable companies to work together openly and independently, which

protects them from antitrust problems. As a rule, open source projects or working

groups are created in this way, which are governed by their own community contract.

These contracts typically include a membership fee that must be paid by the partici-

pating companies and a steering organisation that serves to distribute the budget

collected through membership fees among the projects.

In principle, no one can be prevented from participating in an open source project, but

the contractually regulated structure ensures sensible budgeting for the activity and a

goal-oriented approach. This model is typically used in the vertical open source activi-

ties of the participating companies described above to legally anchor the cooperation.

Many open source deve-

lopers work on a volunta-

ry basis and do not crea-

te their software for a

company or in any other

business context, but as

a voluntary service.

75

Business models around Open Source Software

Another business model practised by the foundations is the organisation of conferenc-

es and user meetings. The aim here is to offer the open source communities platforms

for exchange and to bring users together with contributors.

76

6 Strategic
Consideration of
Open Source

Strategic Consideration of Open Source

77

Strategic Consideration of Open Source

6.1 Open Source Software
in the Company

Just 15 years ago, the use of Open Source Software in companies was considered

revolutionary. Companies that publicly declared that they were using Open Source

Software were observed with suspicion and mistrust. Today, on the other hand, all

studies39 consistently show that the use of Open Source Software in companies has

become quite normal, in fact it is almost unthinkable to do without it.

There is probably no company left that does not use Open Source Software. It is there-

fore all the more astonishing that Open Source Software is still rather reduced to

technical and legal issues in many companies, and is not regarded as a new philosophy

and collaborative production, distribution and business model. The fact that Open

Source Software has been revolutionising ICT ecosystems for several years shows that

this does not do justice to the importance of Open Source Software. This often hap-

pens quietly and unnoticed at first – the effects of this revolution are nevertheless

far-reaching and obvious.

The strategic and economic importance of Open Source Software is shown by develop-

ments in recent years, such as the dominance of the Android mobile operating system,

the market penetration of Open Source Software frameworks for artificial intelligence,

investments and acquisitions of companies such as Redhat or Github by IBM and

Microsoft. Companies should consider all the influencing factors of Open Source

Software and regularly review whether or not their attitude and strategy is conducive

to business. Manifesting this in an open source strategy is recommended.

39 See for example ↗ https://www.bitkom.org/opensourcemonitor

The strategic and eco-

nomic importance of the

topic of Open Source

Software is demonstra-

ted by developments in

recent years.

https://www.bitkom.org/opensourcemonitor

78

Strategic Consideration of Open Source

6.2 Open Source Strategy
Development in the Company

6.2.1 Basic Consideration of an
Open Source Strategy

The following considerations are intended to make it easier for companies to define an

open source strategy and to provide assistance in taking the necessary accompanying

measures. Whether all the above-mentioned considerations and analyses are carried

out or are present in the companies depends very much on the size of the company.

The starting point for consideration may be a common definitions of the term »strategy«:

»Strategy is defined as ‘the determination of the basic long-term goals of an enterprise,

and the adoption of courses of action and the allocation of resources necessary for

carrying out these goals.’ Strategies are established to set direction, focus effort, define

or clarify the organization, and provide consistency or guidance in response to the

environment«40

With regard to Open Source Software, it must be determined to what extent its use,

collaboration in or publication of own open source projects can contribute to achieving

the business goals. In order to derive such a strategy, various aspects need to be con-

sidered.

The vision, goals and general strategy of the company are the essential starting point

for defining a strategy in the field of Open Source Software. Depending on this, the use

of Open Source Software should be planned as a means of achieving the company’s

goals and a congruent open source strategy should be established. A different form

depending on the product, segment, division, unit or company of a company may be

opportune or even expedient depending on the size and diversity. The use of Open

Source Software should never be seen as an end in itself, but as a supporting means to

achieve the company’s goals. Consequently, the open source strategy of a company is

always subordinate to the corporate strategy.

40 Cf. the general definition in Wikipedia, ↗ https://en.wikipedia.org/wiki/Strategic_management.

https://en.wikipedia.org/wiki/Strategic_management

79

Strategic Consideration of Open Source

6.2.2 Strategic directions

An efficient and effective use of Open Source Software can be divided into four essen-

tial maxims of action and thus open source strategies:

1. Prohibition of Open Source Software as far as possible (Limit Open Source Software)

2. Promoting the use of Open Source Software (Use)

3. Promoting the contribution to Open Source Software (Contribute)

4. Promoting the creation of Open Source Software (Create)

These four strategic directions should not be understood as self- contained and delim-

ited, independent concepts. Rather, it can be seen that depending on the company and

the maturity of the topic of Open Source Software as well as the individual aspirations

and the expected benefits, the transitions between these strategies are fluid. Starting

with unmanaged use or suppression of Open Source Software, through conscious use

(Use) and participation (Contribute) to the independent creation of Open Source

Software (Create).

6.2.3 Goals of an open source strategy

Drivers and influencing factors for the definition of an open source strategy can be,

among others:

 ■ Setting standards
 ■ Market presence and external impact
 ■ Gaining market share
 ■ Retaining customers and suppliers
 ■ Talent acquisition
 ■ Knowledge acquisition
 ■ Cost reduction
 ■ Safety requirements
 ■ Market and customer requirements

80

Strategic Consideration of Open Source

6.2.4 Résumé and necessity of an
open-source strategy

The selection and consistent specification of an open source strategy and the extent

and scope within a company may depend on a wide variety of factors. However, it is

certain that no company can do without Open Source Software. In this respect, in

order to ensure the desired exploitation of the potential of Open Source Software as

well as the possibly necessary reduction of risks that can arise from Open Source

Software, a strategy and the corresponding measures for action should be defined.

Against this background, the fact that more than 70% of companies do not yet have an

open source strategy is all the more remarkable.41

At least a minimal open-source strategy is necessary to ensure that licence conditions

are adhered to. For more details, see ↗ Chapter 7 »Compliance«.

When participating in open source projects and founding your own open source

projects, further strategic considerations are necessary to answer questions of cooper-

ation with other companies, governance for projects or community management. For

more details, see ↗ Chapter 4 »Creating Open- Source-Software«.

41 See for example ↗ https://www.bitkom.org/opensourcemonitor

https://www.bitkom.org/opensourcemonitor

81

Strategic Consideration of Open Source

6.3 Open Source Program Office
(OSPO)

As part of an open source strategy, it is important to determine how the topic of open

source and the associated tasks are mapped out organisationally in the company.

The establishment of an Open Source Programme Office (OSPO) has become estab-

lished as best practice.

An OSPO is a central team that takes care of the different aspects around Open Source

Software within a company in the sense of a holistic approach. Originally, this

approach was mainly used by IT companies. However, due to the increased importance

and spread of Open Source Software, it can also be useful and attractive for non-IT

companies that are faced with the challenge of managing Open Source Software in

the company and introducing corresponding processes and tools.

OSPO is the term most commonly used internationally, often a similar form of organi-

sation is also implemented under other names.

6.3.1 Tasks of an OSPO

The responsibilities of an OSPO typically include the following tasks:

 ■ Open Source Strategy

The question here is how Open Source Software – its use, participation in, but also

the initiation of new open source projects – can support the corporate and product

strategies as well as help to achieve the corporate goals. In addition to the creation,

the internal (and, if necessary, external) communication of the open source strategy

in cooperation with the relevant stakeholders is also part of the OSPO’s tasks.

 ■ Open Source Policy

When dealing with open source, rules must be defined and anchored within the

company. This concerns in particular the use of Open Source Software within the

own organisation or the own products, the participation in open source projects,

but also the starting of own projects. It is the task of the OSPO to create and com-

municate the open source policy for the company and to provide appropriate trai-

ning for the employees.

82

Strategic Consideration of Open Source

 ■ Open Source Processes

The definition, implementation, execution and continuous further development of

processes for the management of Open Source Software in the company is also part

of the tasks of an OSPO. For example, processes that help ensure licence compliance.

 ■ Tools

Due to the sheer mass of Open Source Software in companies, the associated

processes can no longer be carried out efficiently without automation and tool

support, especially in larger companies. The task of an OSPO is to introduce, admi-

nister and possibly also develop appropriate tools for the most extensive automati-

on of open source management processes.

 ■ Training

Dealing with Open Source Software makes it necessary for the relevant employees

to build up appropriate knowledge. This concerns the use of Open Source Software

in compliance with compliance and security rules, but also the participation in open

source working groups as well as the initiation of open source projects and the

associated building of communities. The OSPO is typically responsible for develo-

ping, providing and continuously developing an appropriate training programme for

staff.

 ■ Communication

Another task of an OSPO is to create transparency about a company’s open source

commitment, both internally for its own employees and externally for the interes-

ted public, developer communities, partners and customers. Especially when own

open source projects are started, it is important to make them known (for example

via blogposts, presentations at conferences or publications in the relevant media).

Likewise, it is usually desirable to build and manage communities around these

projects. An OSPO can advise and support development teams in these tasks.

 ■ Memberships in Open Source Associations and Committees

In the open source sector, influence is typically exercised through participation in

communities. These can be project-specific communities, but also larger organisati-

ons such as open source foundations. An OSPO typically has the task of aligning

memberships and engagements in these organisations with the strategic goals that

a company is pursuing with open source. Such engagements need to be launched

and supported according to the company’s strategic goals.

The abundance of tasks of an OSPO is therefore large. To prevent it from becoming a

central bottleneck, it is important to weigh up which processes need to be run central-

ly via the OSPO and which decisions should be made decentrally in the development

departments. Tools for automating and supporting processes as well as self-services

for employees play an important role here.

83

Strategic Consideration of Open Source

6.3.2 Organisational Aspects of an
 Open Source Program Office

There is no universal blueprint for the structure and organisational anchoring of an

OSPO in a company. Rather, these depend on the company structure, the use as well as

the strategic importance of Open Source Software for the company. OSPOs often start

small, with only a few positions, sometimes even only one person.

On the one hand, there are OSPOs that consist entirely of full-time staff, and on the

other hand, there are those that are completely virtual. In this case, they consist exclu-

sively of part-time employees who carry out the OSPO work alongside their work in

their actual department. Due to the diversity of its tasks, an OSPO has to work with

many different parts of the company, such as:

 ■ Development departments
 ■ Product management
 ■ Strategy departments
 ■ Licence management
 ■ Legal, IP, compliance and security departments
 ■ Training departments
 ■ Corporate communications and (technical) marketing
 ■ Internal IT department
 ■ Software procurement (purchasing)
 ■ Personnel department

Therefore, a completely virtual organisation consisting exclusively of part-time employ-

ees from several of the above-mentioned departments can make perfect sense. Mixed

forms are also conceivable. For example, there could be a core team of full-time staff

supported by part-time staff from other departments in a virtual approach.

The possibilities for anchoring an OSPO in the company are equally diverse. On the one

hand, there can be a central OSPO that is responsible for the entire company. If, howev-

er, the company consists of parts that act rather independently of each other, it may be

advisable to set up decentralised OSPOs in the individual parts of the company instead

of a central one.

Often an OSPO is placed in the reporting line of the Chief Technology Officer (CTO) or

Chief Operating Officer (COO).

Further information on the subject:

 ■ ↗ Creating an Open-Source-Program (TODO Group of the Linux Foundation)
 ■ ↗ What does an open-source-program office do?
 ■ ↗ Does Your Organization Need an Open-Source-Program Office?

https://todogroup.org/
https://www.redhat.com/en/blog/what-does-open-source-program-office-do
https://thenewstack.io/does-your-organization-need-an-open-source-program-office/

84

Strategic Consideration of Open Source

6.4 Open Source Foundations

There are many aspects to consider when getting involved in open source projects,

whether as a contributor to existing projects or founding new ones: Legal frameworks,

models of cooperation, successful community management and more. For a single

company, these questions are often difficult to answer, as the necessary expertise is

not always available in-house and the dependence on a single company is a hurdle,

especially for building a community.

Open source foundations42 represent a solution here. These are organisations which, as

an association of several companies and often also individual developers, offer a

neutral basis for cooperation on open source projects. The American ↗ Linux Founda-

tion and the European ↗ Eclipse Foundation are examples of large, strongly industry-

oriented organisations. The ↗ Apache Software Foundation is an example of a more

community-oriented organisation. However, there are also a large number of other

organisations43, in particular so- called »user-led foundations«44, which are driven by

companies that act primarily as users rather than producers of software, or indus-

try-specific foundations, such as the ↗ Academy Software Foundation for the film

industry and ↗ Eclipse Automotive for the automotive industry.

An important function of foundations is that they provide an open collaboration

model, often referred to as »open governance«. This is necessary because while open

source licences guarantee software users extensive freedom, they say nothing about

how that software is created. For a sustainable project, it is important to establish

transparency about decision-making processes, to define a clear path for participation

that promotes shared development, and to have a neutral body that carries key

aspects, such as trademarks or project infrastructure. This is achieved through an open

governance model in a foundation.

Foundations also define legal frameworks that enable cooperation between compa-

nies without the need to negotiate and set up specific new structures. This also covers,

for example, antitrust requirements. Finally, foundations offer a valuable resource for

sharing, learning or representing common interests. Since the challenges of dealing

with Open Source Software are very similar for many companies, a joint approach is

particularly appropriate here. In this respect, targeted participation in foundations can

be an important part of the open source strategy.

42 The term »foundations« has become a generalised term in this context. Behind it are various forms of organisations that
work without the intention of making a profit. In Germany, this is often the »Verein«. In Europe, it is often the Belgian
AISBL. In America, so-called 501(c) ↗ organisations are common.

43 The community-maintained Foundation Directory provides a good insight. However, it does not claim to be complete.
↗ https://flossfoundations.org/foundation-directory/

44 See for example ↗ https://oss.cs.fau.de/2020/03/12/research-paper- the-ecosystem-of-openkonsequenz-a-user-led- open-
source- foundation-oss-2020/.

An important function of

foundations is that they

provide an open collabo-

ration model, often

referred to as »open

governance«.

https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
https://www.eclipse.org/
https://www.apache.org/
https://www.aswf.io/
https://projects.eclipse.org/projects/automotive
C:\github\workspace\html2pdf12-0.html#fnref42
https://ﬂossfoundations.org/foundation-directory/
https://oss.cs.fau.de/2020/03/12/research-paper- the-ecosystem-of-openkonsequenz-a-user-led- open-source- foundation-oss-2020/
https://oss.cs.fau.de/2020/03/12/research-paper- the-ecosystem-of-openkonsequenz-a-user-led- open-source- foundation-oss-2020/

85

Strategic Consideration of Open Source

6.5 InnerSource

»InnerSource« describes the procedure of applying open source princip-

les to software development within a company without publishing the

programme code outside the company.

This makes it possible to benefit from the advantages of open source development

models without making development public and without abandoning the business

model of selling software licences. This includes making source code available within

the company across team and project boundaries and also accepting contributions

from people who are not members of the actual team.

InnerSource can thus lead to improved collaboration and increase development speed

and quality, as well as help to reduce costs. Multiple developments can be avoided and

teams depending on projects that do not have enough development capacity can

contribute needed features themselves. This is particularly successful in situations

where different parts of the company need software components with similar require-

ments, for example internal standard libraries, infrastructure components or develop-

ment, test and deployment tools.

It is important to note that InnerSource is not the same as Open Source. InnerSource

code is still proprietary code and the dynamics of an InnerSource project will be differ-

ent from those of a publicly, in many cases volunteer-led, project. Nevertheless, many

concepts can be transferred and positive cultural changes can be achieved.

There are many examples of InnerSource initiatives. The book ↗ Adopting InnerSource,

Principles and Case Studies describes in a series of case studies the successful applica-

tion of InnerSource in companies like Bosch, Ericsson or Paypal. More material can be

found in the ↗ InnerSource Commons Community. These include a series of Inner-

Source ↗ Patterns which capture tactics for using InnerSource.

https://innersourcecommons.org/resources/books/adoptinginnersource/
https://innersourcecommons.org/resources/books/adoptinginnersource/
https://innersourcecommons.org/
https://patterns.innersourcecommons.org/

86

7 Open source
compliance

Open source compliance

87

Open source compliance

According to Wikipedia, »compliance« means »adherence to a rule, such as a specifica-

tion, guideline, standard or law«. Wikipedia further explains: »Regulatory compliance

describes the goal that organizations strive for by ensuring that they are aware of the

relevant laws, guidelines and regulations and take measures to comply with them.«45

↗ »Compliance« is an English word. The Duden dictionary from 2009 does not yet

know it.46 Its current online version says that the business world uses it to mean »com-

pliant, prescribed, ethically correct behavior«47. And Wikipedia states that »Compliance

[…] is the business and legal term for the adherence to rules (also conformity to rules)

of companies [sei], i.e. compliance with laws, guidelines and voluntary codes

[meine]«48, while »in the legal field […] the term compliance basically (describes) the

observance of rules in the form of law and order«49.

Compliance therefore refers to an activity: it is about the deliberate and planned

adherence to requirements, not a kind of »passive« adherence to the law. In the case of

Open Source Software, this difference is crucial: as a rule, people are not allowed to use

this type of software without first making a contribution.

Permission to use and action are linked via the open source licenses. These have a

typical structure: firstly, the users of the software are granted exploitation rights.

Secondly, this permission is subject to conditions. This can be illustrated using the

example of the simplest open source license, the MIT license50. It begins with a copy-

right line and the following statement:

»Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the ‘Software’), to deal in the Software

without restriction, including without limitation the rights to use, copy, modify, merge,

publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to

whom the Software is furnished to do so, […]«

The following postscript »subject to the following conditions« binds the permission to

this condition:

»The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.«

This actually means that MIT-licensed software may only be distributed if all »substan-

tial portions of the Software« are bundled with the respective license text. The scope

of this condition, in particular what is a substantial portion of the software and what is

45 ↗ see Duden. Die deutsche Rechtschreibung, 25., völlig neu bearbeitete Aufl.; ed. v. d. Dudenredaktion, Mannheim, Wien u.
Zürich, 2009 (Duden Vol. 1), p. 317 u. p. 635

46 ↗ see Duden. Die deutsche Rechtschreibung, 25., völlig neu bearbeitete Aufl.; ed. v. d. Dudenredaktion, Mannheim, Wien u.
Zürich, 2009 (Duden Vol. 1), p. 317 u. p. 635

47 cf. ↗ https://www.duden.de/rechtschreibung/Compliance
48 cf. ↗ https://de.wikipedia.org/wiki/Compliance_(BWL)
49 cf.↗ https://de.wikipedia.org/wiki/Compliance_(Law)
50 cf. ↗ https://opensource.org/licenses/MIT. We quote here the license template as specified by the OSI. The MIT licensed

software itself always uses an instantiated license, i.e. a license with a specified copyright line. And if the license subse-
quently requires the license text and the preceding copyright line to be attached to the software, then it is precisely this
specified copyright line that is meant. It is therefore not sufficient to add the template to the bundle that is passed on. You
must always search for the actual license text in the repository to fulfil the license.

A sound basic rule for

users is to take the

license text as literally

and as seriously as

possible.

https://en.wikipedia.org/wiki/Regulatory_compliance
C:\github\workspace\html2pdf12-0.html#fnref45
C:\github\workspace\html2pdf12-0.html#fnref46
https://www.duden.de/rechtschreibung/Compliance
https://de.wikipedia.org/wiki/Compliance_(BWL)
https://de.wikipedia.org/wiki/Compliance_(Law)
 https://opensource.org/licenses/MIT

88

Open source compliance

not, is ultimately a matter of interpretation. However, this does not mean that you can

ignore the license or misinterpret this scope. A sound basic rule for users is to take the

license text as literally and as seriously as possible. However, this also means that no

action is required if the MIT-licensed software is not distributed, i.e. only used for

personal purposes on personal computers.

In this way, typical features of an open source license are defined:

 ■ the attribution of the rights of use
 ■ the formulation of the conditions to be fulfilled
 ■ the linking of the conditions to usage scenarios
 ■ and the existence of room for interpretation that language always opens up.

In the following, we will take a look at further licenses, although not all details will be

considered. After all, it is generally true that the appropriate fulfillment of the license

conditions always requires a personal look at the license text. Secondary explanations

– such as these – may help understanding, but they are irrelevant for the legal assess-

ment, even if they claim to be a guide.

Attentive readers who have already paid for Open Source Software will have wondered

where payment is mentioned in such licenses. There are obviously no license fees. In

fact, there is no contradiction here: the right to use Open Source Software cannot in

fact be acquired directly with money.51 Instead, you »acquire« the rights of use by doing

what the licenses require. The minimum contribution that is required when Open

Source Software is passed on unmodified is that users are correctly informed about

the origin and license of this software. In other words: Open Source Software follows

the principle of paying by doing.52 So anyone who has nevertheless spent money on

Open Source Software has paid for a service that is provided with and for Open Source

Software53, but not for the right to use the software for any purpose, to examine it, to

pass it on to others and to modify it.54

This sets out the framework that needs to be filled when talking about open source

compliance, namely

 ■ about ↗ fundamental challenges
 ■ about ↗ tools for compliance
 ■ about ↗ marginal aspects of compliance and
 ■ about ↗ basic legal constructs.

51 see the open source definition ↗ ch. 2.2
52 see: Reincke and Sharpe: Open Source License Compendium, Release 1.0.2, 2018, p. 103 ↗ https://telekom.github. io/oslic/

releases/oslic.pdf
53 cf. the open source business models ↗ ch. 5
54 cf. ↗ https://www.gnu.org/philosophy/free-sw.html#four-freedoms

The right to use Open

Source Software cannot

in fact be acquired

directly with money.

C:\github\workspace\html2pdf12-0.html#open-source-compliance-as-a-task
C:\github\workspace\html2pdf12-0.html#open-source-compliance-tools
C:\github\workspace\html2pdf12-0.html#special-challenges
C:\github\workspace\html2pdf12-0.html#license-types-and-compliance--activities
 https://telekom.github. io/oslic/ releases/oslic.pdf
 https://telekom.github. io/oslic/ releases/oslic.pdf
 https://www.gnu.org/philosophy/free-sw.html#four-freedoms

89

Open source compliance

7.1 Open source compliance
as a task

Software is generally subject to copyright55: By law, every software developer initially

has the copyright to what he programs. As the author, he often assigns the majority of

these rights56, namely the so- called exploitation rights, to his company or customers

by means of an employment or supply contract. This does not significantly change the

initial situation: software becomes Open Source Software when the owner of the

exploitation rights – be it the programmer or the downstream user – publishes the

software under an open source license57. A license in turn becomes an open source

license when the Open Source Initiative58 – often abbreviated as OSI – includes the

license in the list of official open source licenses59. And for this in turn, the license must

meet the 10 criteria of the Open Source Definition (OSD)60, which the OSI requires open

source licenses to meet. It’s as simple as that – in principle.

The benefit that OSI brings to the open source game with the OSD is that it uses the

OSD to classify only those licenses as open source licenses that actually grant the

corresponding rights to the users of the software. Anyone using software that has

been published under a confirmed open source license can therefore be sure that it

actually grants users the rights they need to use it. It is no longer necessary to carry

out time-consuming legal checks before using software to determine whether this use

is actually permitted. This makes it easy to use Open Source Software61.

55 As a first approach to this topic, please refer to the two Wikipedia articles ↗ Software law and Copyright.
56 ↗ The right to be named as author cannot be assigned. In other words: still no one other than the programmer himself may

call himself the author of the code.
57 In essence, there is a public list of official open source licenses managed by the Open Source Initiative: ↗ https://opensour-

ce.org/licenses/alphabetical
58 see ↗ https://opensource.org/about
59 In order to legitimately include a license, the OSI has given itself an Approval Process. ↗ https://opensource.org/approval
60 cf. ↗ https://opensource.org/osd The Open Source Definition is therefore only indirectly a definition of Open Source

Software. In fact, it contains criteria that the open source licenses must meet, not the software. But these criteria refer to
rights that the licenses must grant to the software users if they want to be open source licenses. Conversely, this means
that users of software distributed under an official open source license always know that they have certain rights.
However, nothing is said about their obligations!

61 ↗ From a formal point of view, it unfortunately remains the task of each user to make sure of this transfer of rights
personally. Because only what has been decided in court is legally clarified. And whether the OSD is correct has, as far as
we know, not yet been an issue in court. However, the fact that so little has been heard in court is also a sign of how little
controversy there is on the subject. In other words: Anyone who adopts the OSD in matters of rights attribution and
simplifies their life with it is in good company.

Anyone using software

that has been published

under a confirmed open

source license can there-

fore be sure that users

are actually granted

the rights they need to

use it.

https://de.wikipedia.org/wiki/Urheberrecht
C:\github\workspace\html2pdf12-0.html#fnref56
C:\github\workspace\html2pdf12-0.html#fnref56
https://opensource.org/licenses/alphabetical
https://opensource.org/licenses/alphabetical
https://opensource.org/about
https://opensource.org/approval
https://opensource.org/osd
C:\github\workspace\html2pdf12-0.html#fnref61
C:\github\workspace\html2pdf12-0.html#fnref61
C:\github\workspace\html2pdf12-0.html#fnref61
C:\github\workspace\html2pdf12-0.html#fnref61
C:\github\workspace\html2pdf12-0.html#fnref61

90

Open source compliance

Nevertheless, open source compliance is a complex matter. This is because the

license-compliant use of Open Source Software by actively fulfilling the corresponding

open source license conditions must take various dimensions into account:

 ■ The OSI’s open source definition only specifies which rights the licenses must grant

to users of software licensed in this way. The fact that these rights of use must be

passed on free of charge results from the obligation to make the source code availa-

ble at no more cost than can reasonably be charged for an (electronic) copy of the

software and the rights to edit and pass on this code62. In addition, however, the

OSD and the OSI leave it to the individual licenses to impose obligations on the users

of the software – if and insofar as these obligations do not limit the rights to be

granted. The rights to be granted are standardized, whereas the obligations are not.

Therefore, it must always be determined on the basis of the individual license

exactly which obligations must be fulfilled. In other words: What the paying-by-

doing principle imposes on users in individual cases.

 ■ Not all licenses that look like or claim to be open source licenses have been

confirmed as such by the OSI. Some of them nevertheless meet all the OSD criteria

and may still be accepted at a later date. Others are almost identical in wording to

an already accepted open source license and yet will never be officially recognized

as open source licenses due to a more or less minor deviation.63 In addition, there

are licenses whose »open source- ness« remains disputed.64 And finally, one encoun-

ters licenses that claim to be open source licenses but in terms of content amount

to a proprietary license. This is why a distinction is made between genuine open

source licenses, potential open source licenses, non-genuine or disputed open source

licenses and fake open source licenses. Nevertheless, even with these »secondary

forms«, it follows directly from copyright law that persons who use software licen-

sed in this way must comply with the requirements specified in the license: It is the

right of any author to attach whatever terms of use to his work. The fact that a

license is not a (genuine) open source license does not therefore exempt you from

complying with its requirements.

62 cf. ↗ https://opensource.org/osd Criterion No. 2. Source Code, No. 1. Free Redistribution, No. 3. Derived Works
63 So the JSON license is right, ↗ https://www.json.org/license.html
64 Such a »disputed« license is, for example, the Server Side Public License (SSPL), under which MongoDB was last relicensed.

Initially, MongoDB was distributed under the AGPL-3.0, a recognized open source license (see ↗ https://opensource.org/
licenses/AGPL-3.0). However, the company behind MongoDB felt that more and more MongoDB-as-a-service offerings
were emerging in the cloud world without really taking the AGPL into account. At first, it wanted to clarify the meaning of
the AGPL through a clause. Then it created its own license, the SSPL, which is identical in wording to the AGPL with the
exception of one paragraph. The approval process at the OSI turned out to be »complex«, so that the company finally
withdrew its application. (cf. ↗ https://en.wikipedia.org/wiki/Server_Side_Public_License). Nevertheless, the SSPL is still
similar to the AGPL – even in terms of text. And from the point of view of copyright law, it does not matter whether a
license is a real, a potential, a fake or a fake open source license: If one uses the software so licensed, it has to fulfill its
conditions.

It is the right of every

author to link their work

to whatever terms of use

they wish.

 https://opensource.org/osd
https://www.json.org/license.html
https://opensource.org/licenses/AGPL-3.0
https://opensource.org/licenses/AGPL-3.0
https://en.wikipedia.org/wiki/Server_Side_Public_License

91

Open source compliance

 ■ Although the licenses can be easily classified by the nature of what they impose on

the users of software licensed in this way as a requirement or prohibition – the

following section is devoted to this – this can only be summarized at a more abs-

tract level. Ultimately, the requirements of the licenses differ in detail in such a way

that each user must determine for each individual case what exactly he must do

(and refrain from doing). Classifications and groupings, as formulated below, are

helpful. Taking them as the sole yardstick and ignoring the actual license text is

inappropriate.

 ■ A further complication arises from the fact that the effect of open source licenses

depends on the context: When which of its conditions must be fulfilled depends,

among other things, on the type of use that triggers the requirement for fulfillment

in the first place. One widespread trigger, for example, is the »redistribution« of

Open Source Software, although the exact (legal) understanding of what constitu-

tes redistribution in the legal sense can vary from country to country. Other triggers

are the possibility of accessing the software via the network or the fact that the

software has been modified. An adequate open source compliance analysis therefo-

re always includes an assessment of the deployment scenario and whether the

conditions triggered by it can be reconciled with the business purpose of the

deployment.

 ■ A final increase in complexity arises from the fact that the requirements for license-

compliant use of Open Source Software also depend on the location in a software

architecture where the open source component in question is to be used: Embed-

ding a module or a library in your own work can trigger a strong copyleft effect;

using Open Source Software as an independent component with its own address

space is more likely not to. Attempts to manage such complex relationships with

seductively simplistic rules – such as the requirement that Open Source Software

with a (strong) copyleft effect should not be used at all – limit the scope of users

excessively and put them at an unnecessary disadvantage compared to their com-

petitors. It is better to also document the software architecture in the open source

compliance analysis and to consider the context of use within this architecture.

The way in which software becomes Open Source Software is simple. The path to

using it in compliance with licenses is sometimes rocky. For example, some managers

declare open source compliance to be a mere risk that can be mitigated or simply

adopted because you won’t be »caught« anyway and – if you are – you won’t be

»punished« so severely in monetary terms. This view is wrong! You can only use Open

Source Software legally if you comply with the license conditions – or not at all. Every

company whose code-of-conduct obliges its employees to comply with the law also

requires them to use Open Source Software only in compliance with the license – no

matter how complex the conditions are.

An adequate open source

compliance analysis

therefore always includes

an assessment of the

deployment scenario.

Legally, Open Source

Software can only be

used in compliance with

the license terms – or not

at all.

92

Open source compliance

But there is also good news: in the end, things are becoming simple again. If you want

to establish open source compliance for a product, you »only« need

 ■ generate the corresponding software bill of materials (SBOM) by
 ■ creating a list of all open source components used in the product-specific soft-

ware stack and
 ■ noting or linking to the homepage, version number, software repository and

license for each entry and noting whether it is an app or program or a module or

library,65

 ■ document the software architecture,66

 ■ have a list drawn up by compliance experts based on this information of what

needs to be done to use the software in the product in compliance with the license67

and
 ■ work through this task list.

65 The work of gathering such information is that which is already best and most supported in terms of automation by open
source tools. (cf. ↗ https://oss-compliance-tooling.org/ Tooling-Landscape/ OSS-Based-License-Compliance-Tools/)

66 A particularly good tool for documenting software architectures in diagram form is draw.io, hosted at https://diagrams.
net/, published in source code at ↗ https://github.com/jgraph/drawio and published under the Apache 2.0 license
↗ https://github.com/jgraph/drawio/blob/dev/LICENSE

67 The tool-supported automated application of compliance competence is currently the least explored field. One approach
at a very early stage is OSCake, ↗ https://github.com/Open-Source- Compliance/OSCake. This shows that we still have a lot
of »manual work« ahead of us in open source compliance and the creation of predefined compliance artifacts – despite all
our efforts.

From a systemic point of

view, establishing open

source compliance for a

product becomes easy

again in the end.

https://oss-compliance-tooling.org/ Tooling-Landscape/ OSS-Based-License-Compliance-Tools/
https://github.com/jgraph/drawio/blob/dev/LICENSE
https://github.com/jgraph/drawio/blob/dev/LICENSE
https://github.com/Open-Source- Compliance/OSCake

93

Open source compliance

7.2 License types and compliance
activities

Before we offer you a classification of open source licenses and the conditions typically

associated with them, we would like to explain the demarcation criterion used to form

the categories. In fact, the usual classes

 ■ permissive open source licenses without copyleft effect
 ■ Open source licenses with a weak copyleft effect
 ■ Open source licenses with a strong copyleft effect

depend on the way in which the copyleft effect is embedded in them. In this respect, it

is also worth explaining separately:

7.2.1 The copyleft effect
(as a demarcation criterion)

The term »copyleft« was invented by Richard Stallman as a »play on words«.68 In his

opinion, copyright owners use the copyright to deprive users of software of rights that

should belong to them. In contrast, the copyleft is intended to ensure that these rights

cannot be taken away from users. Copyleft therefore refers to a method »[…] to make a

program (or other work) free and to demand that all modified and extended program

versions are also free«. The author licenses his code in such a way that not only his own

code may be freely used, freely modified and freely distributed, but also that all modifi-

cations, additions and derivations that other developers bring into the development

process may be used free of charge in the same sense.69 In short, »copyleft« means

that you may only distribute your modifications under the same conditions under

which you received the original version of your modifications.

In practice, it is also necessary to distinguish between strong and weak copyleft:

The strong copyleft wants to ensure that the software that uses a work licensed in this

way as a constituent component is passed on under the same conditions under which

one obtained the component embedded oneself. The original license terms thus

68 see ↗ https://de.wikipedia.org/wiki/Copyleft
69 see GNU project ↗ https://www.gnu.org/copyleft/copyleft.de.html

»Copyleft« is a play on

words: copyright serves

to protect the rights of

the author. Copyleft, on

the other hand, aims to

preserve rights once

granted as common

property.

https://de.wikipedia.org/wiki/Copyleft
https://www.gnu.org/copyleft/copyleft.de.html

94

Open source compliance

extend not only to modifications of or additions to the component itself, but also to

the »custom« code that uses that component.70

The weak copyleft only wants to ensure this for the adopted work and its direct chang-

es. This makes it possible to place independent code added to a library under weak

copyleft as part of a derived work under a different license. Fewer or no restrictions

apply to this other license. Only the embedded component distributed under a weak

copyleft license is subject to these rules71.

7.2.2 Open source license typology

This allows the known licenses to be classified into groups:72

Fig. 1: Open source license classification (excerpt)

70 ↗ Thus, the strong copyleft can also cause license conflicts. If a program required two differently licensed libraries whose
licenses each proclaimed a strong copyleft, then the program could no longer be distributed in compliance with the license
– precisely because both embedded components demanded that the superordinate part be distributed under the same
license as the component.

71 The OSI discusses abandoning the term copyleft altogether and replacing it with reciprocal licensing. The words weak and
strong would then be replaced by the description of the »reciprocity scope«. (cf. ↗ https://opensource.org/node/875).
We have already explained that strong and weak copyleft differ in terms of their effect and focus. It is impossible not to
mention the term »copyleft«. There is hardly a more established term in the context of free Open Source Software.

72 see: Reincke and Sharpe: Open Source License Compendium, Release 1.0.2, 2018, p. 23 (↗ https://telekom.git- hub.io/oslic/
releases/oslic.pdf). In addition to this, there is a second type of grouping in which the open source licenses are analyzed
with regard to their handling of software patents. cf. this. op. cit. chapter 3.1 »The problem of implicitly releasing patents«.

OSI confirmed
open source licenses

Permissive licenses

Apache-2.0

BSD-X-Y PHP-3.X

PostgreSQL

MIT MS-PL

Copyleft licenses

strong
copyleft effect

GPL-X.YAGPL-3.XEPL-X.Y

LGPL-X.Y EUPL-1.Y

MPL-X.Y

weak
copyleft effect

 https://opensource.org/node/875
https://telekom.git- hub.io/oslic/releases/oslic.pdf
https://telekom.git- hub.io/oslic/releases/oslic.pdf

95

Open source compliance

Permissive licenses form the first subgroup of open source licenses. As OSI-certified

licenses, they grant users all the rights specified in the OSD, in particular the right to

use the software, to pass it on, to modify it and to pass it on in modified form (provid-

ed access to the source code is available.) In addition, permissive licenses do not have a

copyleft effect – neither a weak nor a strong one. These licenses leave it up to the

people working on the software to decide whether to redistribute their own work or

their changes to the adopted work as free software. It leaves them free to turn the

result of their work into proprietary software – hence the name of this category:

Permissive licenses allow editors to keep the result of their improvements and changes

to themselves, so to speak, even though that work is built on a free software base.

Permissive licenses also allow the editors to pass on the result of their interventions as

proprietary software in binary form.

Nevertheless, every permissive license also imposes obligations on the users of the

software licensed in this way, which they must fulfil even if they distribute their work

as a whole in binary form under a different license.

 ■ All permissive licenses require that packages or products containing such licensed

software be accompanied by the license text.
 ■ Some permissive licenses also expect special files to be included with these bundles

if they are included in the repository
 ■ Some permissive licenses also prohibit advertising with brands, names or similar.

The group of permissive licenses includes at least:

 ■ Apache-2.0, the Apache license, version 2.0,73
 ■ Berkeley Software Distribution Licenses,74

 ■ BSD-2-Clause,
 ■ BSD-3-Clause,

 ■ MIT-License,
 ■ MS-PL (Microsoft Public License),
 ■ PostgreSQL-License,
 ■ PHP-3.0-License.

73 We follow the SPDX nomenclature (↗ https://spdx.dev/licenses/) for the license designation (the italic part), which may
pursue the goal of simple and efficient retrievability of licenses through uniform designations and identifiers.

74 ↗ The MIT license and the BSD licenses require increased attention, as they are based on the idea of a template: One
adopts the license text, specifies the copyright line and calls the whole thing XYZ license. In the case of BSD licenses and
the MIT license, it is therefore necessary to look at the license text itself to determine whether it is really a BSD license or
MIT license.

Permissive licenses bear

this designation because

they impose the fewest

obligations on the user.

 https://spdx.dev/licenses/

96

Open source compliance

Licenses with a weak copyleft form the second subgroup of open source licenses.

As OSI-certified licenses, they also grant users the OSD rights, i.e. in particular the right

to use the software, pass it on, modify it and distribute it in modified form. The weak

copyleft effect embedded in the license guarantees that users have access to the

source code required for modification:

Namely, these licenses require – in addition to all the other conditions that they also

want to see fulfilled – that changes and improvements to the software itself are used

and distributed under the same conditions as those under which the processor

obtained the original, i.e. under the same license. These conditions include that the

software once obtained – modified or unmodified – must also be made available to

third parties again in source code75.

The open source licenses with weak copyleft do not, however, extend this obligation to

the »higher-level« software, so to speak, which uses software licensed in this way with

weak copyleft as an embedded component.

This means that licenses with a weak copyleft impose the following obligations on users:

 ■ All licenses with a weak copyleft effect also require that packages or products

containing software licensed in this way be accompanied by the license text.

 ■ In addition, all licenses with a weak copyleft effect expect the source code of the

licensed component to be made available in one way or another, regardless of

whether the software has been modified or not.

 ■ Some of the licenses with a weak copyleft effect also expect special files to be

included with these bundles if they are included in the repository.

 ■ Others want the copyright information of all the programmers involved to be

displayed conspicuously, i.e. not only visible within the source code76.

 ■ Finally, some of these licenses also prohibit advertising with trademarks, names or

the like.

75 see also ↗ Copyleft effect in general
76 see ↗ https://opensource.org/licenses/LGPL-2.1, § 1

In the case of licenses

with a weak copyleft, the

copyleft effect only

affects the licensed soft-

ware itself.

C:\github\workspace\html2pdf12-0.html#the-copyleft-effect
https://opensource.org/licenses/LGPL-2.1

97

Open source compliance

The group of licenses with a weak copyleft includes at least:
 ■ EPL (= Eclipse Public License 1.0/2.0),77

 ■ LGPL (= GNU Lesser General Public License, Version 2.1/3.0),*
 ■ MPL (= Mozilla Public License, Version 1.1/2.0),
 ■ MS-RL (= Microsoft Reciprocal License).

Licenses with a strong copyleft form the third group of open source licenses. As OSI

certified licenses, they also grant users the OSD rights, i.e. in particular the right to use

the software, pass it on, modify it and pass it on in modified form. The strong copyleft

effect embedded in the license guarantees that the user has access to the source code

required for modification:

These licenses require – in addition to all the other conditions they also want to see

met – that modifications and improvements be used and distributed under the same

conditions as those under which the modifiers obtained the original, namely the

modifications and improvements to the original software per se and those to the

overarching »system software« that uses the original as a subcomponent. These

conditions include that the modifications of the received software are made available

in the source code as well as the new whole based on the original or the modified

version78.

 ■ All licenses with a strong copyleft effect also require that the license text be inclu-

ded in packages or products containing software licensed in this way.

 ■ Furthermore, all licenses with a strong copyleft effect expect the source code of the

licensed component itself to be made available in one way or another, regardless of

whether the software has been modified or not.

 ■ In addition, all licenses with a strong copyleft effect expect that the code of the

software that uses the actual software as a component (in the same address space

= library, modules) is also made accessible under the same license. This applies in

particular to software that you develop yourself on the basis of these components:

you are then no longer free to choose your own license.

 ■ Some of the licenses with a strong copyleft effect also expect special files to be

attached to these bundles if they are included in the repository.

 ■ Others require that the copyright information of all programmers involved be

displayed conspicuously, i.e. not only within the source code79.

 ■ Finally, some of these licenses also prohibit advertising with trademarks, names or

similar.

77 ↗ The classification of the EPL is controversial, in some cases it is seen as a license with a strong copyleft.
78 see also ↗ copyleft effect in general
79 see ↗ https://opensource.org/licenses/GPL-2.0, § 1

In the case of licenses

with a strong copyleft,

the software that uses

libraries/modules licen-

sed in this way must also

be distributed under the

same license under

which the libraries/

modules used were

distributed.

https://opensource.org/licenses/GPL-2.0

98

Open source compliance

The group of licenses with a strong copyleft includes at least

 ■ GPL (= GNU General Public License, Version 2.0/3.0),
 ■ AGPL (= GNU Affero General Public License, Version 3.0),
 ■ EUPL (= European Union Public License, Version 1.0–1.2)80.

7.2.3 Compliance obligations in the overview

The subtleties of the licenses must not distract from one point:

The paying-by-doing principle applies to all of them. None of them offer the option of

acquiring the rights of use financially while waiving the obligations. Instead, even the

most »permissive« license expects users of such licensed software to do something

under certain circumstances. In order to use Open Source Software in a license- com-

pliant manner, it is not enough to think in generalized categories. Only the specific

license determines what exactly is to be done under which circumstances. In the end,

it’s all about the individual case, about what the specific open source license actually

requires. Nevertheless, it is sometimes helpful to take an overview – even if it does not

claim to show all the details – as an indication of the direction from which one can

expect requirements:

Class License Text Extra Documents Component Code System Code

Permissive licenses must be supplied must be supplied on a
case-by- case basis

can be made accessible,
but need not be

can be made accessible,
but need not be

Licenses with weak
copyleft effect

must be supplied must be supplied on a
case-by- case basis

must be made accessible can be made accessible,
but does not have to be

Licenses with a strong
copyleft effect**

must be supplied must be supplied on a
case-by- case basis

must be made accessible must be made accessible

80 The EUPL is a special case in several respects. For example, it is published in several languages, including German ↗ https://
eupl. eu/1.2/en/. It also contains an explicit »Copyleft clause« (see § 5) and is generally classified as a strong copyleft (see ↗
https://www.ifross.org/artikel/public-license-eupl-22- sprachfassungen-verfuegbar). However, it also contains a »compati-
bility clause« which states that in the event of a »conflict«, the obligations of the other license »take precedence«, provided
that this other license is mentioned in the list of »compatible licenses«. And the »EPL« also appears in this list – a license
with a weak copyleft. (see also: ↗ https://telekom.github.io/oslic/releases/oslic.pdf p. 33 f)

https://eupl. eu/1.2/en
https://eupl. eu/1.2/en
https://www.ifross.org/artikel/public-license-eupl-22- sprachfassungen-verfuegbar
https://www.ifross.org/artikel/public-license-eupl-22- sprachfassungen-verfuegbar
https://telekom.github.io/oslic/releases/oslic.pdf

99

Open source compliance

This can be translated into rules of thumb, namely

 ■ for the permissive licenses:
 ■ Distribute the license text together with the package (product) containing the

software. The license text must be the one that really belongs to the software,

not a license template. And actually distribute it together with the software, not

secondarily via a download link.
 ■ Also distribute the files together with the package whose distribution is required

by the license.
 ■ Refrain from doing what the licenses prohibit you from doing.

 ■ for licenses with a weak copyleft effect:
 ■ Distribute the license text together with the package (product) containing the

software. The license text must be the one that really belongs to the software,

not a license template. And actually distribute it together with the software, not

secondarily via a download link.
 ■ Also distribute the files together with the package whose distribution is required

by the license.
 ■ Make the source code of the component used by your system accessible. A

reference to existing repositories is not sufficient. And make the code of the

exact version that is installed in your system accessible.
 ■ Refrain from doing what the licenses prohibit you from doing.

 ■ for the licenses with a strong copyleft effect:
 ■ Distribute the license text together with the package (product) containing the

software. The license text must be the one that really belongs to the software,

not a license template. And actually distribute it together with the software, not

secondarily via a download link.
 ■ Also distribute the files together with the package whose distribution is required

by the license.
 ■ Make the source code of the component used by your system accessible yourself.

A reference to existing repositories is not sufficient. And make the code of the

exact version that is installed in your system accessible.
 ■ Finally, make the source code of the higher-level system you have developed that

uses the component with a strong copyleft accessible. A reference to existing

repositories provided by you is not sufficient. And make the code of exactly the

version that is built into your system accessible here too.
 ■ Refrain from doing what the licenses prohibit you from doing.

 ■ for all licenses:
 ■ Carefully observe the license-specific Dos and Don’ts
 ■ Do not base your compliance analysis on instructions that inappropriately con-

dense the subject matter – as these rules of thumb do.

100

Open source compliance

7.3 Open source compliance tools

We can see that a lot needs to be done to make an open source-based product license

compliant. And this will have to be done under complex conditions. Ultimately, it

always comes down to aggregating and generating the right compliance artifacts in

the right context and integrating them into the package/product in such a way that

customers can view them. This task calls for thematic and technical support.

7.3.1 Training

A central German-language source on open source compliance is the book »Open-

Source-Software. The legal framework of free software«. It explains legal contexts and

historical backgrounds81.

Another tool is »ifrOSS«, the »Institute for Legal Issues of Free and Open Source Soft-

ware«82, which claims to have set itself the task of »[…] accompanying the rapid devel-

opment of free software from a legal perspective«83. If the advantage of the book is its

systematic condensation, then the advantage of this site, which is accessible on the

Internet, is its diversity and topicality.

As a third tool, the OpenChain project offers extensive comprehensive training materi-

al.84 Material on open source licences can be found on the pages of the OSI, the Open

Source Initiative85 and for specific licences it is advisable to refer to the pages of the

organizations that maintain the respective licence, if such an organization exists.

81 see Jaeger, Till and Axel Metzger: Open-Source-Software. Rechtliche Rahmenbedingungen der Freien Software; 3rd ed:
C. H. Beck 2011. This book is currently in its 5th edition and will – it is to be hoped – be further updated. Other inspiring
sources could be, for example, the handbook »Open Source for Business« [see Heather/Meeker, »Open Source for Business
– A Practical Guide«, 3rd edition 2020], the commentaries on the important open source license GPL in the copyright
commentary [see Fromm/Nordemann/Czychowski, Urheberrecht, 12th edition 2018, GPL, from page 2779] or books on
copyright law in general [see for example: Wandtke/Bullinger/Grützmacher, UrhR, 5. Edition 2019, Section 69c para. 73 et
seq.

82 cf. ↗ https://www.ifross.org/
83 see ifrOSS: Objectives, tasks, history, ↗ https://www.ifross.org/? q=node/16
84 see ↗ https://www.openchainproject.org/resources
85 see ↗ https://opensource.org/

https://www.ifross.org/
ttps://www.ifross.org/? q=node/16
https://www.openchainproject.org/resources
https://opensource.org/

101

Open source compliance

7.3.2 Advice

Users who want to integrate Open Source Software into their product now have a

number of people and institutions on hand to help them achieve open source compli-

ance. This does not just start with well- known, internationally recognized lawyers, but

extends to established companies that offer a full service and finally leads to the Open

Chain Project86, which is dedicated to the topic of global open source compliance

across supply chains. Describing this in more detail is of particular value due to its

overarching role:

As a project, the aforementioned OpenChain is affiliated with the Linux Foundation.87 It

forms, at its core, »a diverse, global commercial partner network« through which to

ensure that any organization of any size can apply the industry standard that Open-

Chain is developing.88 While this standard initially consisted of the conception of an

ideal structure against which companies could self-certify,89 OpenChain* has recently

succeeded in having its standard officially elevated to the »International Standard for

Open Source License Compliance« with the number ISO 5230.

The basic idea behind OpenChain is therefore that the more suppliers that adhere to

this standard, the easier it will be to use open source- based supplier products. It goes

without saying that there is still a long way to go before the uncontrolled adoption of

preliminary products and the corresponding compliance artifacts.

In addition to its central tasks, OpenChain manages a number of »work groups«,

including the »sub-project« Open-Source-Tooling for Open-Source-Compliance, which

claims to be »[…] focused on reducing reSource costs and improving the quality of

results around open source compliance activities.«90 In fact, the focus here is on linking

existing open source tools to form a closed »tool chain« that automatically generates

the compliance artifacts that must be included with your open source-based product.

To this end, this group also maintains an excellent overview of programs that support

the generation of compliance artefacts91.

86 cf. ↗ https://www.openchainproject.org/
87 cf. ↗ https://www.linuxfoundation.org/projects
88 cf. ↗ https://www.openchainproject.org/partners
89 cf. ↗ https://www.openchainproject.org/get-started/conformance
90 cf. ↗ https://oss-compliance-tooling.org/
91 cf. ↗ https://oss-compliance-tooling.org/Tooling-Landscape/OSS- Based-License-Compliance-Tools/

https://www.openchainproject.org/
https://www.linuxfoundation.org/projects
https://www.openchainproject.org/partners
https://www.openchainproject.org/get-started/conformance
https://oss-compliance-tooling.org/
https://oss-compliance-tooling.org/Tooling-Landscape/OSS- Based-License-Compliance-Tools/

102

Open source compliance

7.3.3 Tools

If you remember what needs to be done to prepare your product in a license-compliant

manner, it is easy to see that the work to be done can be typified:92

 ■ The Analyzer determines the dependencies: You need to know which Open Source

Software belongs to a product as a whole.

 ■ The Downloader saves the content of the corresponding repositories on the local

system so that it can be viewed with regard to the licenses.

 ■ The Scanner then determines the actual licenses and marks elements that can be

incorporated or converted into compliance artefacts.

 ■ The Evaluator allows you to introduce your own usage rules into the process and

have them applied.

 ■ The reporters aggregate the information into the required compliance artifacts.

Depending on the intended purpose, different reporters can be defined and integrated.

If you want to understand which tools are ready for use and can be used in this task

suite, take a look at the OpenChain-ToolingLandscape93. And if you want to see to what

extent these can actually be linked to chains, take a look at ORT94 or QMSTR95.

However, there is currently no continuous chain. It is therefore not yet possible to fully

automate the creation of compliance. The good news is that the open source commu-

nity is already working on this.

One-fits-all approach. What is missing is a component that brings legal licensing

knowledge to the table and applies it to each individual case so that suitable artefacts

are created depending on the context. OSCake, the open source compliance artifact

knowledge engine, is working on this desideratum. (see ↗ https://github.com/

Open-Source-Compliance/ OSCake). Once this has been implemented, compliance will

be truly automated.

92 We follow here – slightly modified – the terminology from ORT, the Open Source Review Toolkit. It is a »meta-system« that
uses existing open source solutions for the individual compliance tasks as far as possible. (see ↗ https://github.com/
oss-review-toolkit/ort). As a superordinate tool for generating compliance artifacts, ORT already goes a long way,
especially as it can be configured very flexibly. However, it still works with a One-fits-all-approach. But a component that
enables the creation of suitable artefacts by using legal know-how depending on the respective matter is still missing.
A solution to this problem is being worked on with the Open- Source-Compliance artifact knowledge engine, called
OSCake. As soon as a solution is found, compliance will be completely automated.

93 cf. ↗ https://oss-compliance-tooling.org/Tooling-Landscape/OSS- Based-License-Compliance-Tools/
94 cf. ↗ https://github.com/oss-review-toolkit/ort
95 see ↗ https://qmstr.org/

It is therefore not yet

possible to fully

automate the creation

of compliance.

https://github.com/Open-Source-Compliance/ OSCake
https://github.com/Open-Source-Compliance/ OSCake
https://github.com/oss-review-toolkit/ort
https://github.com/oss-review-toolkit/ort
 https://oss-compliance-tooling.org/Tooling-Landscape/OSS- Based-License-Compliance-Tools/
https://github.com/oss-review-toolkit/ort
https://qmstr.org/

103

Open source compliance

7.4 Special challenges

Many open source licenses date back to the last century or the early 2000s96. There was

no »digital biotope« back then. Computers were used differently than they are today: if

you wanted to use a program, you had to get a copy that matched your own operating

system. Entire distributions were sold on floppy disks or CDs with program collections

were enclosed with computer magazines.

So even today – despite the new ways of use – the distribution of software still trig-

gers compliance with open source license obligations. In terms of language, the current

licenses are still aimed at what was current when they were created. This occasionally

causes a discrepancy between modern technology and traditional licenses. Neverthe-

less, we are also required to comply with these »old« licenses. Ignoring them is not an

option.

The only way out of this dilemma is to »think along« with the special challenges

described below.

7.4.1 SPDX and license naming

The abundance of different licenses and their variants sometimes makes it difficult to

know which license is involved. This problem has been addressed by SPDX and the

names have been standardized97. This approach has become so well established that

the SPDX identifiers are now also used in the source code and thus become part of the

Licensing Statement, unless added later.

7.4.2 The Javascript challenge

Javascript is considered a »lightweight, interpreted or JIT-translated language.«98 Such

programs are often – but not only – sent to computers as part of a web front-end,

where they are executed by a Javascript interpreter built into the browser. Many

96 The BSD licenses were used for the first time in the early 1980s (cf. ↗ https://www.lin-fo.org/bsdlicense.html); the MIT
license dates from 1988 (cf. ↗ https://de.wikipedia.org/wiki/MIT-Lizenz), but also has an eventful history (cf. ↗ https://
opensource.com/article/19/4/history-mit-license). GPL-2.0 and LGPL-2.0 date back to 1991 (cf. ↗ https://opensource.org/
licenses/GPL-2.0 and https://opensource.org/ licenses/LGPL-2.0), LGPL-2.1 to 1999 (cf. ↗ https://opensource.org/licenses/
LGPL-2.1), Apache-1.1 to 2000 (cf. ↗ https://www.apache.org/licenses/LICENSE-1.1), Apache-2.0 to 2004 (cf. ↗ https://www.
apache. org/licenses/LICENSE-2.0) and the (L)GPL-3.0 licenses to 2007 (cf. ↗ https://opensource.org/licenses/GPL-3.0 and
https://opensource.org/licenses/LGPL-3.0))

97 cf. ↗ https://spdx.dev/licenses
98 see ↗ https://developer.mozilla.org/de/docs/Web/JavaScript

The fact that software is

passed on is still the

main trigger for the

activation of license

requirements to be com-

plied with.

https://www.lin-fo.org/bsdlicense.html
https://de.wikipedia.org/wiki/MIT-Lizenz
 https://opensource.com/article/19/4/history-mit-license
 https://opensource.com/article/19/4/history-mit-license
https://opensource.org/licenses/GPL-2.0 and https://opensource.org/ licenses/LGPL-2.0
https://opensource.org/licenses/GPL-2.0 and https://opensource.org/ licenses/LGPL-2.0
https://opensource.org/licenses/LGPL-2.1
https://opensource.org/licenses/LGPL-2.1
 https://www.apache.org/licenses/LICENSE-1.1
https://www.apache. org/licenses/LICENSE-2.0
https://www.apache. org/licenses/LICENSE-2.0
https://opensource.org/licenses/GPL-3.0 and https://opensource.org/licenses/LGPL-3.0
https://opensource.org/licenses/GPL-3.0 and https://opensource.org/licenses/LGPL-3.0
https://spdx.dev/licenses
https://developer.mozilla.org/de/docs/Web/JavaScript

104

Open source compliance

Javascript libraries are MIT licensed – simply because the source code is always implic-

itly supplied anyway. According to this license, the license text must be »included« in

this library and distributed with it99.

To save bandwidth, however, the standard of »minification« has emerged, which

removes all whitespace and all comments from the source code.100 This makes the

discrepancy apparent: compliance with the license requires something that the tech-

nology does not reasonably implement.

How can people focused on compliance deal with this? They could, for example, use

the non-minimized version. This would slow down the network in the long term. Or

they could reintroduce the license text in their versions before delivery. This would

require complex integration into their own CI/CD pipeline. Or they could make the

license texts available for download themselves. This would mean that the code and

license would not be sent as a single unit. This creates a tragic situation in the classic

sense: whatever you do, it’s wrong.

Fortunately, the situation eases insofar as the developers of the libraries themselves

offer them as minimized versions and thus seem to implicitly approve of the procedure.

In addition, most »minifiers« now support the preservation of comments relevant to

the license.

7.4.3 The AGPL or network usage as a
compliance trigger

As mentioned, the open source licenses have a certain age and are technically linked to

the status that was current when they were created. This is why the transfer of soft-

ware usually triggers compliance rules. In times of web-based services, where data

rather than programs are exchanged, fewer compliance cases are triggered: The Open

Source Software is operated as a service in the cloud or in the data center and is simply

not passed on. This is formally correct, but does not quite correspond to the idea of

free software.

AGPL-3.0 was developed to close this gap. It is similar to GPL-3.0 with a single excep-

tion: the added § 13 stipulates that all obligations of the license must also be fulfilled

towards users who interact with the program »remotely through a computer net-

work«101.

99 The MIT license explicitly states »The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.« cf. ↗ https://opensource.org/licenses/MIT [orig. KR.]

100 cf. ↗ https://www.cloudflare.com/de-de/learning/performance/why- minify-javascript-code/
101 cf. ↗ https://opensource.org/licenses/AGPL-3.0, § 13. However, the situation is somewhat more complicated: On the one

hand, the AGPL limits the trigger here to cases where the service provider has modified the program. In addition, however,
it then requires him – in a linguistically rather imprecise manner – that all additional parts must also be distributed under
the same license. Unwilling interpreters might understand this to mean the entire software stack.

Javascript is – technically

speaking – always open

source. But the code is

not necessarily Open

Source Software. This is

decided by the licensing.

The AGPL is intended to

guarantee free software

even in times of cloud

technology.

https://opensource.org/licenses/MIT
https://www.cloudﬂare.com/de-de/learning/performance/why- minify-javascript-code/
https://opensource.org/licenses/AGPL-3.0

105

Open source compliance

Anyone offering services on the Internet should therefore still be vigilant. It is not

enough to derive license compliance from the fact that the software is not distributed.

Rather, all AGPL-licensed components must be analyzed separately.

7.4.4 (L)GPL-v3 and replaceability

The 3rd generation of (L)GPL licenses also contains the central component of all GNU

licenses, the copyleft effect. At the time of the revision of the 2nd generation102 – 2005

to 2007 – there were two other pressing issues in the open source community, namely

the handling of software patents103 and »digital rights management«.

With regard to DRM, GPL-3.0 requires, on the one hand,104 that anyone who uses

software licensed in this way in systems »waives his right to prohibit circumvention of

technological protection measures«.105 On the other hand, GPL-3. 0,106 »[…] that when

distributing devices with GPL software, the necessary information for installation […]

must be supplied in order to be able to re-install edited GPLv3 programs«.107

Both stipulations together have a dramatic impact on the use of (L)GPL-3.0 licensed

software in devices: If it is used, its manufacturer must make it technically and/or

procedurally possible for everyone who receives such a device to compile and install

improved versions on it. And they may not contractually restrict the use of this techni-

cal option. The manufacturer may not even prohibit its »customers« from »hacking«

these devices in order to be able to install improved versions.

These requirements apply to Internet of Things systems with (L)GPL 3.0 software as

well as cars, trains, washing machines and many more.

Product managers must therefore carefully consider how (L)GPL 3.0 licensed software

should be handled in the closed system. They could generally ban it from products that

they do not want to give an interface to replace it. Alternatively, they could have their

device designed with such an interface. Finally, they could also pursue the idea of

having their customers’ own developments imported by their own team. If they did

this, they would be well advised to regulate the warranty separately and to provide for

post-certification for legally approved devices. In the case of car tuning in Germany,

this is a common procedure with the registration of approved modifications by the

TÜV.

However, in »closed« systems it is important to keep a close eye on the (L)GPL-3.0

licensed software.

102 see Jaeger, Metzger: Open-Source-Software. Munich 2011, p. 50 ff.
103 cf. ↗ https://www.fsf.org/blogs/community/the-threat-of-software- patents-persists and https://opensource.org/

licenses/GPL-3.0, § 11
104 cf. ↗ https://opensource.org/licenses/GPL-3.0, § 3
105 cf. Jaeger, Metzger: Open-Source-Software. Munich 2011, p. 61.
106 cf. ↗ https://opensource.org/licenses/GPL-3.0, § 6
107 cf. Jaeger, Metzger: Open-Source-Software. Munich 2011, p. 61.

(L)GPL-3.0 licensed soft-

ware requires special

care if it is to be integra-

ted into »embedded

systems«.

https://www.fsf.org/blogs/community/the-threat-of-software- patents-persists and https://opensource.org/licenses/GPL-3.0,
https://www.fsf.org/blogs/community/the-threat-of-software- patents-persists and https://opensource.org/licenses/GPL-3.0,
 https://opensource.org/licenses/GPL-3.0
https://opensource.org/licenses/GPL-3.0

106

Open source compliance

7.4.5 Open source compliance, automatic
updates and CI/CD chains

Today, it is common to install firmware updates via the network. Such a newly assem-

bled stack must of course be reviewed again with regard to open source compliance.

This often requires new compliance artifacts to be generated.

This is because licenses may change from one version to the next, copyright lines may

have been added and files to be included may have been adapted.

This poses a particular challenge for product maintenance: anyone who maintains a CI/

CD pipeline to generate and install updates for their products should integrate the

generation of compliance artifacts into it. And anyone who generates new versions

»manually« will also want to repeat the compliance preparation »manually«.

7.4.6 Maven or automatic package
aggregation

Maven108 is the prototype for a special compliance challenge: the basic idea of this tool

is that the developers define the components of their project in a POM file109 and that

Maven executes the build process independently and reproducibly on this basis.110 For

this purpose, the open source components required in each case are brought in ‘on the

fly’ from an (external) repository into the local development environment.111

In the POM, the components may also be defined ‘underspecified’: If the release num-

ber is missing, mvn fetches any version. If the location is missing, mvn fetches the

components from somewhere and so on. This simplifies the development work and

weighs down the compliance supervision. For the time being, it remains systemically

unclear which software has really been built into a product. Even if the POM file has

been formulated in detail, network irritations can still cause maven to ‘exceptionally’

use another repository. This means that the content of the referenced packages – also

with regard to supplied compliance artefacts – no longer has to be the same. If open

source compliance is worked out on a certain maven status, the next call to mvn build

may have already changed the basis of the compliance work.

108 cf. ↗ https://maven.apache.org/what-is-maven.html
109 see ↗ https://maven.apache.org/guides/introduction/introduction-to- the-pom.html
110 see ↗ https://maven.apache.org/guides/getting-started/maven-in-five- minutes.html
111 cf. ↗ https://maven.apache.org/repository/index.html

Anyone who maintains a

CI/CD pipeline to genera-

te and install updates for

their products should

integrate the generation

of compliance artifacts

into it.

https://maven.apache.org/what-is-maven.html
https://maven.apache.org/guides/introduction/introduction-to- the-pom.html
https://maven.apache.org/guides/getting-started/maven-in-ﬁve- minutes.html
https://maven.apache.org/repository/index.html

107

Open source compliance

For this problem, there are at least approaches and ideas for solutions:

For example, one could radically distribute their program as »in-house development +

manifesto«. Guaranteed reproducibility should ensure that the build process also runs

on other systems. The developer would not need to generate compliance artifacts for

the components that are collected on the customer’s computer. In a sense, it is not the

developer who gives the software to the customer, but mvn. The developer would

therefore only be responsible for the license- compliant handover of their own develop-

ment. However, this approach has at least the disadvantage of a very difficult warran-

ty: after all, how can a company be held liable for something that is finally assembled

on the customer’s computer? If something doesn’t work, customers will turn to their

supplier again, even if the cause of the »fail« lies on the customer’s computer. And the

producer has at least the effort to determine and prove this.

Alternatively, the developer could move the components to their own »company«

repository and have the manifests referenced last. This would give them control of the

inventory and a solid basis for their compliance activities, but they would have to

accept increased effort in terms of repository and version maintenance.

Maven is not the only automatic aggregation system. The same applies to other

approaches: whenever a developer has their software packages compiled transparent-

ly, the open source compliance work must be specially designed. Because ignoring the

license requirements is not an option.

7.4.7 Compliance in the Cloud: Virtual Machines

Clouds that operate with virtual machines also have their own special compliance

challenges. Their architecture looks like this – with the proviso that it is adapted:

 ■ On the lowest level are the actual computers, which may be running an open source

operating system such as Linux.

 ■ In the middle, this machine combines a virtualisation layer – such as Openstack112

– to form the actual cloud. And this layer can also use Open Source Software:

Openstack, for example, is distributed under Apache 2.0.

 ■ Finally, it is part of such systems that the virtualisation layer not only provides the

requested virtual machines with memory and disk space, but also with a bootable

software image. Without this, it would not be able to start the virtual machine.

112 see ↗ https://www.openstack.org/

Whenever a developer

has their software

packages put together

transparently, the open

source compliance work

needs to be specially

designed.

https://www.openstack.org/

108

Open source compliance

From the perspective of a compliance officer, the situation looks like this:

 ■ It is the responsibility of the hardware suppliers to ensure that the computers

themselves are handed over to the cloud operators in a license-compliant manner.

 ■ It is the responsibility of those who install the virtualization layer on the hardware

to ensure that it is handed over to the cloud operators in a license-compliant man-

ner.

 ■ Software is handed over to the users of a virtual machine with the images, at least

if this image includes ssh access. This is because anyone with ssh access will usually

also have scp access and can use it to download the software on their virtual machi-

ne.

This means that in a cloud that operates with virtual machines, the person who pro-

vides the image must ensure that it is prepared in accordance with the license. This can

be the person who orders a virtual machine – provided they bring their own image and

have it integrated into the Openstack retrieval process. In most cases, however, the

images are provided by the cloud operator as part of the virtualization layer. This

means that the cloud operator is responsible to its customers for generating and

providing the compliance artifacts for all open source components used in the images.

7.4.8 The strong copyleft without a strong
copyleft

Libraries that are distributed under a license with a strong copyleft force the works

based on them to be distributed under the same license. So far, so familiar, so uncritical.

It becomes strange when a central core library at the lowest level of a software stack is

licensed in this way. The developers of the GNU system have also considered this effect

and have therefore placed the glibc, i.e. the library that enables calls into the kernel and

is used by every other component,113 under the LGPL,114 not under the GPL.

OpenJDK115 is different: This free Java standard library is licensed at its core under the

GPL-2.0. And like libc, it is used by all Java programs, provided it is installed as a Java

standard library. This could indicate a clash. In fact, OpenJDK is published under the

GPL-2.0- with-classpath-exception: Although this confirms the generally strong coypleft

effect, it grants an exception for this library116 and reduces the effect to a weak copyleft.

113 cf. ↗ https://www.gnu.org/software/libc/libc.html
114 cf. ↗ https://directory.fsf.org/wiki/Libc#tab=Details
115 cf. ↗ https://openjdk.java.net/
116 cf. ↗ https://openjdk.java.net/legal/gplv2+ce.html

Exceptions are another

method of limiting the

strong copyleft effect.

https://www.gnu.org/software/libc/libc.html
https://directory.fsf.org/wiki/Libc#tab=Details
https://openjdk.java.net
https://openjdk.java.net/legal/gplv2+ce.html

109

Open source compliance

When considering compliance, it is important to bear in mind that not

every license with a strong copyleft triggers the strong copyleft effect

under all circumstances.

7.4.9 Upstream compliance

If you publish something as open source – the term »giving something upstream« has

now become commonplace – there are two variants:

Firstly, you can set up your own project with its own repository. In this case, the free-

dom to choose a license is only limited by the strong copyleft effect of required compo-

nents. Irrespective of this, publication should be accompanied by other users fulfilling

the conditions of our license. It is therefore advisable to include the artifacts required

by the selected license in the repository. This creates clarity.

On the other hand, you may want to contribute to an existing project. This will only be

successful if you submit to the customs of the project. This goes as far as licensing and

signing a possibly required contributor license agreement. For both, REUSE117 is a new

procedure that standardizes the filing of licenses and licensing statements.

7.4.10 Export control

Modern software development operates across borders; software is delivered across

national borders. With regard to the open source phenomenon, this often involves

redistribution (redistribution) when components of software are previously download-

ed from the Internet and distributed in the course of product sales.

However, this usual procurement of software can lead to components being included

in the product that are neither approved for use in Germany nor may be delivered from

there to certain countries outside Germany. International companies in particular are

required to take this aspect into account when setting up their supply chain. There are

a number of references to this on the Internet118.

117 cf. ↗ https://reuse.software/
118 see for example ↗ https://www.apache.org/foundation/license- faq.html or https://www.cloudfoundry.org/ and

information on embargo options.

https://reuse.software/
https://www.apache.org/foundation/license- faq.html or https://www.cloudfoundry.org/ and information on embargo options
https://www.apache.org/foundation/license- faq.html or https://www.cloudfoundry.org/ and information on embargo options

110

Open source compliance

7.4.11 Compliance and software patents

Patents serve to protect technical inventions and grant patent holders a temporary

monopoly position in return for which they must disclose the technical teaching.

In the area of software, however, legislators have opted primarily for protection under

copyright law. Thus, computer programs are explicitly protectable under copyright law

as linguistic works,119 whereas in patent law, programs for data processing systems are

initially expressly not regarded as inventions.120 However, this only clarifies that an

implementation as software is not in itself regarded as an invention. The decisive

factor for patentability is whether there is a technical reference, so-called technicality.

For example, claims that involve the execution of certain process steps by a computer

to solve a problem in the classical fields of technology are already patentable. In addi-

tion, a protectable, computer-implemented invention may exist if it has special fea-

tures that justify patentability. This is often controversial in individual cases. However,

patent protection for pure application programs is usually rejected.

Since software is protected by copyright, open source licenses also operate primarily

under copyright law. Due to a possible parallel protection under patent law, side

effects may arise under certain circumstances. For example, in the case of purely

copyright-based open source licensing, the rights of use could be limited by patents

where action is taken against the copyright licensee on the basis of existing patents.

Patent clauses in open source licenses serve to resolve this conflict. There are two

approaches:

 ■ A patent license is granted in addition to the rights of use under copyright law.

Examples of open source licenses with a patent license are the
 ■ GPL-3.0 (and variants)
 ■ AGPL-3.0
 ■ Apache-2.0
 ■ MPL-1.1/2.0
 ■ EPL-1.0/CPL-1.0

 ■ A patent retaliation clause is attached to the open source license which, although it

does not grant any rights of use under patent law, cancels the rights of use granted

under copyright law in the event of a patent action. Examples of open source

license patent retaliation clauses are the
 ■ Apache-2.0
 ■ MPL-1.1/2.0
 ■ EPL-1.0/CPL-1

119 cf. German Copyright Act (Urhebergesetz) UrhG § 2 para. 1 and §§ 69a
120 cf. German Patent Act (Patentgesetz) PatG § 1 para. 3 and 4 and correspondingly EPC Art. 52 para. 2 and 3

Since software is protec-

ted by copyright, open

source licenses also ope-

rate primarily under

copyright law.

111

Open source compliance

Consequently, patent clauses are now common provisions in open source licenses.

In addition, there are licenses such as the MIT license that formulate the granting of

rights very broadly and not in a copyright-specific manner, so that the granting of

patent rights could also be included.

As a rule of thumb for license-compliant use, patent holders can assume that by pass-

ing on Open Source Software, they implicitly grant a right to use the patents in their

patent pool that are necessary for the use of the software. However, this only applies

in the context of this software and not in general.

112

Open source compliance

7.5 The international
legal basis

So far, we have explained what needs to be done in order to use Open Source Software

in a license-compliant manner. Another interesting question is why these licenses have

to be observed at all. On what basis are these obligations imposed on us when it

comes to international issues? The following section examines this legal question.

The so-called »principle country country protection« is generally applied in the context

of issues that are regularly characterized by copyright law. This basically means that

the legal structure of copyright is based on the law of the respective country for whose

territory protection is claimed. In the open source context, this applies to central legal

issues such as who is actually considered the author and first rights holder of program-

ming, how they can grant rights to their programming to third parties, whether their

rights are transferable at all and how they can tailor these rights, i.e. what content the

rights granted have.

For all contractual issues, however, the so-called statute of contract applies. In Europe,

this is governed by the Rome I Regulation (Rome I Regulation). According to Art. 3 Rome

I Regulation, any choice of law takes precedence. However, since many open source

licenses of great practical importance (e.g. GPL, MIT, BSD and Apache licenses) do not

contain a choice of law clause, the law of the author’s or rights holder’s domicile

regularly applies. This is because if the parties do not explicitly choose a law, Art. 4

Rome I Regulation refers to the place where the characteristic service is provided.

According to the prevailing view, in the case of the granting of simple rights of use – as

in all open source licenses – this lies with the licensor, i.e. the author.

According to Art. 12 of the Rome I Regulation, the scope of application of the contract

statute includes questions of formation, validity, liability and warranty, as well as

questions of interpretation. The latter is relevant, for example, for the interpretation of

the scope of a copyleft effect of a license or the question of whether the license also

grants rights to use software by way of a SaaS offer.

113

8 Outlook

Outlook

114

Outlook

Writing about the fact that Open Source Software has conquered its recognised place

among providers of products, software and services in the information economy,

telecommunications, new media and the digital economy, and that it is impossible to

imagine current and future products and innovations without it, seems somewhat

understated when measured against its outstanding success. The concept of Open

Source Software is now 40 years old and has always been subject to challenges. Never-

theless, the ecosystem has become stronger and more powerful. While in the early

years it was mainly enthusiasts and volunteers who created software in the private

sphere, today the topic is ubiquitous in the professional environment as well. It is

increasingly taken for granted in companies across functions such as software devel-

opment, but also other areas such as purchasing, marketing and human resources. The

majority of developers who contribute to Open Source Software do so as part of their

paid work121.

Open Source Software has become »mainstream« and has arrived in every company

and all business sectors.122

But of course there are still a number of challenges to be overcome in the future, for

example through the rapidly growing model of operating Open Source Software as a

service. However, if one no longer operates the software oneself, but consumes it as a

service, then the freedoms guaranteed by open source licences may only have a limited

effect on the users of the services. This can even lead to a strengthening of manufac-

turer dependencies. Nevertheless, it is possible to migrate data and use cases to anoth-

er service provider or to operate the software oneself. It is crucial for users to build up

the necessary competence to be able to act confidently.

Furthermore, for companies that offer open source-licensed products, there is a risk

that their business model is no longer viable if it had not taken into account the possi-

ble use in the cloud context. For example, some companies have changed their licens-

ing model due to the practices of the so-called hyper scalers and no longer rely on

generally accepted open source licences, but on their own, unrecognised or even

proprietary models, citing pressure from the competition of the large cloud providers

as the reason. A possible and already practised response of the ecosystem to licence

changes in such cases are forks of the respective open source product.

This problem is an indication that there is a need to further develop open source

licences. Another indication is the emergence of so-called »ethical source licences«,

which see themselves as a further development of open source licences, but exclude

certain use cases that are perceived as ethically unacceptable. The challenge here will

be to draw clear lines between what can be regulated in a software licence and what

must be regulated through other mechanisms, and to maintain the spirit of the »open

source definition«.123 124

121 See the Linux Foundation’s »FOSS 2020 Contributor Survey«. ↗ https://www.linuxfoundation.org/resources/publications/
foss- contributor-survey-2020

122 Open Source Monitor 2021, ↗ https://www.bitkom.org/opensourcemonitor
123 ↗ http://wiseearthtechnology.com/blog/peaceful-open-Source-license, https://github.com/atErik/PeaceOSL
124 ↗ https://www.golem.de/news/open-Source-lizenzen-gegen-den- missbrauch-freier-software-1509-116210.html

The majority of develo-

pers who contribute

to Open Source Software

do so as part of their

paid work.

https://www.linuxfoundation.org/resources/publications/foss- contributor-survey-2020
https://www.linuxfoundation.org/resources/publications/foss- contributor-survey-2020
https://www.bitkom.org/opensourcemonitor
http://wiseearthtechnology.com/blog/peaceful-open-Source-license, https://github.com/atErik/PeaceOSL
https://www.golem.de/news/open-Source-lizenzen-gegen-den- missbrauch-freier-software-1509-116210.html

115

Outlook

In general, it can be stated that in the future it will be very important to distinguish

where open source is merely used as a nice marketing term or as an ideological cudgel

and where open source actually delivers on the promise of more innovation, efficiency,

transparency and independence.

Other challenges will follow and the open source ecosystem will master these as well.

Software development in and with the ecosystem is simply necessary for many com-

panies today in order to continue to bring competitive software-based products and

solutions to market in a timely manner. Active participation in the ecosystem can, if

necessary, alleviate the continuously growing shortage of developers. Especially for

companies from states facing demographic change, the »open source way« can be an

option to mitigate the effects of the skills shortage.

Open Source Software has positively influenced innovative operating models. It has

provided a creative, reliable and, above all, competitive extension of use both in corpo-

rate procurement processes and in classic tendering situations. In the coming years,

the worldwide open source movement will have to continue to face the task of main-

taining and, in many cases, expanding its lead as a serious alternative and competitor

to proprietary software in the market. This requires a targeted adaptation and mod-

ernisation of its licensing landscape as well as the achievement of higher degrees of

standardisation and the establishment of a comprehensible quality awareness. A

decisive factor is to make the sometimes still time-consuming verification of compli-

ance with all its aspects a matter of course in software asset management through

structured automation. Standards such as OpenChain ↗ ISO/IEC 5230:2020 and ↗ SPDX

will simplify licence compliance along the software supply chain in the coming years.

But licence compliance will remain an exciting topic. Companies are well advised to

build up the corresponding competences. The Open Source Programme Office (OSPO)

has established itself as an effective instrument for integrating open source compli-

ance into a holistic open source approach. All open source issues are bundled in it:

From compliance with regard to use and own contributions to the support of open

source topics in business development and the establishment of ecosystems for the

establishment of innovative service architectures with partners and customers.

In the past, numerous reference implementations or Defakto standards were already

realised as Open Source Software. In the future, too, disruptive solutions based on

Open Source Software will prevail and establish a de facto standard if they strike a

chord with users. However, it is to be expected that more and more often a reference

implementation of a defined standard will be developed cooperatively on the basis of

open source. It can thus be assumed that standards will be easier to use in the future

and will thus become established more quickly.

Software development

in and with the ecosys-

tem is simply necessary

for many companies

today to continue to

bring competitive soft-

ware-based products

and solutions to market

in a timely manner.

https://de.wikipedia.org/wiki/ISO/IEC_5230
https://www.iso.org/standard/81870.html

116

Outlook

Attacks on the software supply chain, in which malicious code is introduced directly or

indirectly into supplied software, have increased in the recent past and this trend is set

to increase massively. This affects all software (and hardware), regardless of which

licence it is under. However, Open Source Software offers special challenges here, but

also opportunities. For example, the large number of open source modules used in

some language ecosystems can make it difficult to verify the integrity and trustworthi-

ness of sources and packages used. On the other hand, the transparency of open

source makes it possible to develop effective mechanisms to carry out checks oneself,

where proprietary software leaves only trust in the manufacturer. It is advisable to

exercise care in the integration of supplied software and to support community-wide

initiatives to secure the open source supply chain. Due to the increasing spread of

Open Source Software and the rising degree of dependency, the number and intensity

of code reviews will increase and thus more security vulnerabilities will be found and

fixed. Nevertheless, dealing professionally with the »perceived insecurity« is a chal-

lenge.

Open Source Software is a powerful driver of innovation in many ways. For example,

innovative open source solutions can be used in areas where they were not previously

present without any significant upfront investment. The availability of the source code,

the right to change it, thus being able to adapt it to the requirements of the respective

areas, and finally the royalty-free nature of open source make this possible. In this way,

completely new products and even markets can emerge. In short: Open Source Soft-

ware is an enabler for new technologies, it enables the opening up of new markets and

the development of future business models. While the use of Open Source Software is

now ubiquitous and has already become a matter of course, most companies still have

the next step ahead of them: active participation in the open source ecosystem. Taking

the next steps here, establishing a culture of sharing and contributing pragmatically

and ultimately also strategically to open source projects opens up enormous potential

– not only from an idealistic point of view, but above all from an economic one. The

innovative power and development capacity of the open source ecosystem cannot be

surpassed by any single company. Therefore, it is simply a must to actively participate

in the ecosystem in order not to be sidelined technologically. Open source foundations

(cf. ↗ Chapter 6.4) will continue to play a central role here, as the legal framework they

provide provides a neutral environment in which companies can develop software

together. This creates the conditions for competing companies to cooperate in

non-competitive areas on the basis of open- source software.

Open Source Software

is an enabler for new

technologies.

117

Outlook

Dicebat Bernardus Carnotensis nos esse quasi nanos gigantum

umeris insidentes, ut possimus plura eis et remotiora videre,

non utique proprii visus acumine, aut eminentia corporis, sed

quia in altum subvehimur et extollimur magnitudine gigantea.

»Bernard of Chartres said that we are, as it were, dwarfs sitting on the shoulders of

giants, in order to be able to see more and more distant things than they do – not, of

course, thanks to our own keen eyesight or height, but because the height of the

giants lifts us up.« – John of Salisbury c. 1120: Metalogicon 3,4,47–50125

In this sense, we wish all companies and developers the courage to take the step

towards openness, and thus to open up the full possibilities of open source for them-

selves and all of us.

125 ↗ https://de.wikipedia.org/wiki/Zwerge_auf_den_Schultern_von_Riesen

https://de.wikipedia.org/wiki/Zwerge_auf_den_Schultern_von_Riesen

118

9 Excursus

Excursus

119

Excursus

9.1 On the emergence of
Open Source Software

Open Source Software also has a history as an idea126, knowing about it facilitates

understanding – and this is the task the following sections are dedicated to.

9.1.1 From Unix to Linux

The term »Open Source Software« itself is a fairly recent invention. It was only created

in 1998 – as a »marketing gimmick«, so to speak – to replace the term »free software«,

which had been in use since the early 1980s. The term »free software« also sent (and

still sends) political signals. Thus, the desire for a pragmatic, harmless alternative arose

in the community.

Apart from this programme, however, free software has been present since the begin-

nings of commercial computer technology: in the first decades, free software formed a

constitutive component of computer companies’ business model, without being called

free software yet. The actual business of commercial computer science initially consist-

ed »only« of selling hardware. Software was the »give-away« that was delivered

together with the hardware, including the source code. The exchange of improved

versions of the software among customers was seen as an improvement of the hard-

ware product. This approach was favoured by the nature of the clientele: early comput-

er systems were mainly based at universities. Scientists and technicians used the

software supplied, adapted it – as part of their work – to their respective needs, passed

it on, received modified versions, and based their own work on it.

In this way, they countered the lack of possible uses for the expensive hardware.

Conversely, it was in the interest of the companies that the software for their hard-

ware grew. The greater the range of functions, the greater the incentive for institutes

and organisations to buy it.

126 One book that interested people should read if they want to learn quickly and thoroughly is »The Software Rebels« by Glyn
Moody. A second is Sam Williams’ biography »Free as in Freedom. Richard Stallman’s Crusade for Free Software«. The
following presentation is inspired by – without individual references but with explicit thanks – these two works.

The exchange of impro-

ved versions of the soft-

ware among customers

was seen as an improve-

ment of the hardware

product.

120

Excursus

At the end of the 1960s, the tide turned: IBM was forced by a lawsuit from the US

Department of Justice to decouple hardware and software. Software was given its

own value. This decoupling laid the foundation for a separate market. Operating

systems and programmes became the relevant differentiators of the new business line.

Hardware »only« delivered pure computing power. Software became a tradable com-

modity.

During this time, the first version of UNIX was developed at AT&T’s Bell Laboratories,

primarily for internal use. However, AT&T gave its Unix to the universities at cost price,

including the source code. The fact that this code base was easily accessible first

increased user interest. And this encouraged further developments, as did – ironically

– the lack of support: AT&T itself offered no support for the product. So it was a matter

of helping oneself, primarily and best of all in exchange with like-minded people.

Local users quickly joined forces, exchanged solutions, and improvements via prelimi-

nary versions of the Internet and helped with problems. Through this free, unorganised

cooperation in the academic community, UNIX quickly reached a high level of maturity.

A first step towards institutionalisation was then taken by the University of California

at Berkeley. It gathered the emerging improvements, collected the new Unix tools and

applications and published everything together continuously in its Berkeley Software

Distribution (BSD). AT&T, on the other hand, turned to the task of distributing stable

releases with commercial interest. However, when 1984 the fall of the telephone

monopoly led to the break-up of AT&T, the successor company also took up the concept

of software that had value on its own. Users of the tools from BSD now also had to

purchase an AT&T source code licence, which became increasingly expensive. The

commercialisation of Unix progressed, not without creating a counter-movement.

Thus the restriction of free use via the introduction of licence fees also led to the fact

that – after a corresponding call in a concerted action by BSD developers – remaining

AT&T code was completely removed from the BSD Unix derivative. Over time, a truly

free Unix thus emerged. The possility to access (besides Linux) OpenBSD, FreeBSD etc.

as a free Unix, is due to this development.

The commercialisation of

Unix progressed, not

without creating a coun-

ter-movement.

121

Excursus

9.1.2 A second and different path led to Linux

Also at Richard M. Stallman’s university – MIT’s Artificial Intelligence Laboratory with

its original »hacker« and »sharing« culture in software – the development of commer-

cialisation and compartmentalisation was practically noticeable. A popular anecdote is

that Richard Stallman once wanted to adapt his printer to new interfaces, but the

necessary printer software was not included in the printer’s source code. Even when

Stallman finally found a university colleague who had this code, the colleague was not

allowed to pass it on to Richard Stallman because of the licence agreement. Software

suddenly had a value of its own that had to be protected by exclusion. And it was

precisely this exclusion – according to the simple view of Richard M. Stallman – that

hindered him in his activities.

This kind of protection by turning away from the idea of free use soon extended

beyond the commercial operating system Unix. Since patents on software became

possible in the USA in 1981, there was also an increased desire among developers

themselves to own programmes. From this side, too, the willingness to freely exchange

software was thus limited.

Stallman felt both developments to be a personal limitation. And thus, starting in

1984, he tried to revive the original dynamics of a culture of sharing, as he had come to

know and appreciate in the early UNIX and BSD community at MIT. He began to devel-

op and distribute the GNU operating system (a recursive acronym: »GNU«s not

»UNIX«) under the terms of free software. Even more: he conceived the idea of free

software and thus became the forerunner of the GNU project together with the Free

Software Foundation (FSF), which was founded from it in 1985. GNU was to be a com-

pletely free and open operating system.

Free not as in the sense of »free beer«, but in the sense of »freedom«. It was to include

a set of applications that would allow any user to use, view, modify, and redistribute

the software in modified form without restriction.127 This desire gave rise to the GNUG-

PL, the GNU General Public License, which for the first time cast the concept of »free

software« into a licence.

Numerous applications quickly emerged within the GNU project. The guaranteed

freedoms (re-)established (university) cooperation through exchange. Stallman’s idea

worked: the cooperation of individuals on a small scale could be worthwhile because

the system as a whole would be permanently freely available.

However, the GNU project could only live up to its claim of creating a completely free,

complete unix operating system with its own kernel. This central component of every

operating system connects the modules and makes them executable. As long as a

commercial Unix kernel was still needed to use all the free tools of the GNU project,

the goal was not achieved. It was Linus Torvalds who finally programmed this kernel at

127 cf. ↗ https://www.gnu.org/philosophy/free-sw.html

https://www.gnu.org/philosophy/free-sw.html

122

Excursus

the beginning of the 1990s, called it Linux and has had a decisive influence on its

development to this day. He made his Linux kernel available as free software right

from the start by distributing the code under the terms of the GPL. And there, too,

Richard Stallman’s idea bore fruit: many more computer scientists around the world

were inspired to participate.

Thus, in combination with the already completed applications of the GNU project,

what is known as LINUX today was eventually created.128

9.1.3 From »Free« to »Open«

The impetus for the emergence of the open source movement was the disclosure of

Netscape Navigator at the end of the 1990s. At that time, Netscape was unable to

assert itself with its browser against Microsoft and the dominance of Internet Explor-

er. Therefore, Netscape’s code base was to be released and the browser was to be

maintained by a free community. Today we know the result as »Firefox« and the

associated Mozilla project.

But at the time of this release of an initially commercial product, the attribute »free

software« proved difficult in communication with companies if one wanted to pursue

new commercial business ideas on this basis. The philosophy associated with »free

software« and the now common understanding of code as a company secret had a

deterrent effect. In order to get into better contact with management and deci-

sion-makers in corporations, an alternative name was sought. It should sound more

business-friendly and be less ideologically tainted. The suggestion to use the name

»Open Source Software« for it is said to have come from Christine Peterson (Foresight

Institute). Based on this name, the Open Source Initiative (OSI) was finally founded in

1998 by Bruce Perens, Eric S. Raymond and Tim O’ Reilly, which brought together ideas

of free software and the Debian Free Software Guidelines to form the Open Source

definition.129

In terms of usage, there is no difference between free software and Open Source

Software: free software licences are almost all also listed as open source licences.130

Conversely, the four constitutive freedoms of free software – meaning: to be allowed

to use, understand, distribute and improve it131 – are completely covered by the open

source definition. The differences manifest themselves in the messages of the terms:

»Open Source Software« emphasises the practical benefits and the development

method; »free software« emphasises the social benefits.132 Put pointedly, non-free

128 The entire operating system is also referred to as GNU/Linux to emphasise that an operating system does not only consist
of its kernel and that the tools from the GNU Project have an equally important part in the functioning whole. (Cf. GNU
Project: Why Free Software is Better than Open Source Software; ↗ https://www.gnu.org/

129 Open Source Definition ↗ http://opensource.org/osd
130 cf. OSI: Licenses by Name ↗ http://opensource.org/licenses/alphabetical
131 cf. GNU Project: What is Free Software? ↗ https://www.gnu.org/philosophy/free-sw.html
132 cf. Stallman, Richard: Why Open Source misses the mark Free Software, ↗ https://www.gnu.org/philosophy/open-source-

misses-the- point.html

https://www.gnu.org/
http://opensource.org/osd
http://opensource.org/licenses/alphabetical
 https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/open-source-misses-the- point.html
https://www.gnu.org/philosophy/open-source-misses-the- point.html

123

Excursus

software is »[…] for the open source movement [….] a suboptimal solution [;] for the

free software movement [… but] a social problem and free software (its) solution.«133

In any case, when one thinks of free software, one should »[…] think of free as in

freedom of speech, not as in free beer.«134

Occasionally, attempts are made to reconcile the name conflict via hybrid terms such

as »Free/Libre Open Source Software (FLOSS)« and »Free and Open Source Software(-

FOSS)«.135

This fits with the statement that »the free software and open source movements […]

are something like two political camps within the free software community.«136

9.1.4 Generation GitHub

The first decades of open source were marked by the struggle for the new idea of free

and open software. Many people and companies did not take the concept of the four

freedoms seriously, saw it as too idealistic or even actively fought it.

In the second half of the 2010s, however, this picture changed fundamentally. The idea

of open source caught on and became mainstream, not only among enthusiasts and

private idealists, but also across the breadth of the economy.

Two acquisitions from 2018 made this abundantly clear. IBM acquired the open source

manufacturer RedHat for 34 billion US dollars and Microsoft bought GitHub for 7.5

billion US dollars. This was particularly noteworthy because GitHub, as a platform with

100 million repositories and over 30 million users at the time,137 was effectively the

home of the global open source community, and it marked the result of a radical

turnaround for Microsoft from being an opponent of open source to being the compa-

ny with the most open source contributors globally by comparison.

133 GNU Project: Why Free Software is Better than Open Source Software, ↗ https://www.gnu.org/philosophy/free-software-
for- freedom.en.html

134 GNU Project: What is Free Software?, ↗ https://www.gnu.org/philosophy/free-sw.html
135 cf. Stallman, Richard: FLOSS and FOSS, ↗ https://www.gnu.org/philosophy/floss-and-foss.html
136 Siehe ↗ https://github.blog/2018-11-08-100m-repos/
137 Linus Torvalds referred to Linux as »just a hobby, won’t be big and professional like gnu« in his first announcement email in

the comp.os.minix newsgroup (see ↗ https://en.wikipedia.org/wiki/History_of_Linux)

Linux’s jokingly proclai-

med goal of »world

domination« has become

reality.

https://www.gnu.org/philosophy/free-software-for- freedom.en.html
https://www.gnu.org/philosophy/free-software-for- freedom.en.html
https://www.gnu.org/philosophy/free-sw.html
 https://www.gnu.org/philosophy/ﬂoss-and-foss.html
https://github.blog/2018-11-08-100m-repos/
https://en.wikipedia.org/wiki/History_of_Linux

124

Excursus

The dominance of Open Source Software in all areas where software is an essential

component can also be seen in the development of Linux. Started as a hobby project138

in 1991, today, in 2021, it runs on billions of devices, from phones139 to cloud servers140 or

super computers141 to Mars helicopters142. Linux’s jokingly proclaimed goal of »world

domination« has become a reality.143

In many ways, open source has become taken for granted. Nadja Eghbal, in her 2016

research report for the Ford Foundation ↗ »Roads and Bridges: The Unseen Labor

Behind Our Digital Infrastructure«, describes how open source is a large part of the

digital infrastructure, and in doing so, like roads and bridges, can be seen as part of our

public infrastructure. It also describes the challenge that can arise in maintaining this

shared infrastructure.

In the youngest generation of female software developers, who take

open source for granted, who consume code from GitHub without

much fuss, the struggles of the past are no longer present.

The fact that it takes considerable effort to maintain this code is sometimes forgotten.

Solving this problem is one of the challenges of open source for the future.

One can discuss and speculate a lot about what has caused this enormous success of

open source. Many aspects are described in this guide. Ultimately, it can probably be

seen as a mixture of natural development over time, hard economic advantages and

the idealism of a fantastic community.

138 See ↗ https://www.theverge.com/2021/5/18/22440813/android- devices-active-number-smartphones-google-2021
139 See ↗ https://www.zdnet.com/article/linux-now-dominates-azure/
140 Since 2017, all 500 super computers on the TOP500 list run Linux: ↗ https://www.top500.org/statistics/overtime/
141 See ↗ https://spectrum.ieee.org/nasa-designed-perseverance- helicopter-rover-fly-autonomously-mars 142
142 See ↗ https://www.linuxjournal.com/content/25-years-later-interview- linus-torvalds
143 ↗ »Executive Order on Improving the Nation’s Cybersecurity«

https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/
https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/
https://www.theverge.com/2021/5/18/22440813/android- devices-active-number-smartphones-google-2021
https://www.zdnet.com/article/linux-now-dominates-azure/
https://www.top500.org/statistics/overtime/
https://spectrum.ieee.org/nasa-designed-perseverance- helicopter-rover-ﬂy-autonomously-mars 142
https://www.linuxjournal.com/content/25-years-later-interview- linus-torvalds
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

125

Excursus

9.2 Software Bill of Materials
(SBOM)

The term »Software Bill of Materials« or »SBOM« for short has

become increasingly present in recent years. It crops up in the context of software

supply chains and questions about security, licence compliance and similar issues. With

the US President’s Executive Order 14028 of 2021144 calling for SBOM as an element of

enhancing cybersecurity, the concept has gained increased attention that is evident

across the industry.

For Open Source Software, the concept of SBOM is of particular importance, as open

source components now make up a large part of all software produced. According to

the ↗ »Synopsys Open Source Security and Risk Analysis report 2022«, 97 per cent of all

software contains open source components and, on average across all software, 78 per

cent of projects consist of Open Source Software. The large number of open source

components poses a particular challenge here. According to the report ↗ »Sonatype

2021 State of the Software Supply Chain«, there are a total of 37 million available open

source components in the Java, Javscript, Pyton and .NET ecosystems alone.

In this chapter we want to introduce the concept of SBOM, explain how it can be

applied and classify in which areas and for which purpose it is already relevant today

and will become so in the future.

9.2.1 What is an SBOM and what purpose
does it serve?

The term »Bill of Materials« comes from the physical world, where lists of pieces or

materials are maintained for physical goods. This creates transparency about compo-

nents of products and records data such as name, origin or manufacturer.

For example, in the event of manufacturing problems, this Bill of Materials gives

manufacturers the opportunity to identify which components are affected, which

products are affected and by whom the causes can be remedied.

144 This can be done, for example, by using ↗ tools of the SigStore project.

https://www.synopsys.com/blogs/software-security/open-source-trends-ossra-report/
https://de.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://de.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://docs.sigstore.dev/cosign/other_types/#sboms-software-bill-of-materials

126

Excursus

For consumers, the Bill of Material provides transparency about ingredients, such as

the list of ingredients in food. This makes it possible to make a conscious choice of

food, for example in the case of allergies.

Transferred to the software world, the Software Bill of Materials describes the com-

plete components of a given software product or software component. In particular,

data such as unique identification of a component, versions, licences and information

about the structure such as dependency information are recorded.

In particular, dependencies can be a challenge, as they are often only implicitly selected,

even small products can contain a large number, and without explicit analysis, surpris-

ing components can often emerge.

Once all components are captured via an SBOM, this enables the question to be

answered: »What exact software am I actually using?« This provides the basis for

carrying out activities such as:

 ■ Treatment of vulnerabilities. Which applications are affected? What is the current

patch status?

 ■ Licence compliance. Which licences are included in the software? Are there incompati-

bilities or licences with undesirable effects?

 ■ Risk assessment. Are components included that pose risks, for example in terms of

security or support? How often are components with risks used? What is the impact of

the risks?

 ■ Strategic overview. What is the overall picture of software components in use? How

can software components be strategically designed? For example, where is contribu-

ting to open source components valuable from a strategic perspective?

In order for SBOMs to fulfil their purpose, they must be maintained and made available

together with the associated software artefacts. The responsibility for this lies with

the creator of the respective artefact. This means that the availability of SBOMs must

be ensured independently for self-created software. In the case of supplied software,

the responsibility lies with the suppliers and must be demanded by the acceptors. If

this is ensured throughout the entire software supply chain, the SBOM concept can

develop its full effect.

127

Excursus

9.2.2 What data is contained in an SBOM?

An SBOM contains a compact set of data to identify software components as well as

the most important meta-data about each component, such as origin or licence. In

addition, an SBOM contains document-level meta-information, such as the time and

type of creation and what the SBOM refers to.

There are two important standards to describe SBOMs: SPDX and CycloneDX. They are

described in detail in a later section. The minimum profile of SPDX defines the follow-

ing data to be collected (Source: ↗ SPDX Specification 2.3):

SPDX subclause Field name

L1.1 6.1 SPDX-Version

L1.2 6.2 Data License

L1.3 6.3 SPDX Identifier

L1.4 6.4 Document Name

L1.5 6.5 SPDX Document Namespa-
ce

L1.6 6.8 Creator

L1.7 6.9 Created

L2.1 7.1 Package Name

L2.2 7.2 Package SPDX Identifier

L2.3 7.3 Package Version

L2.4 7.4 Package File Name

L2.5 7.5 Package Supplier

L2.6 7.7 Package Download
Location

L2.7 7.8 Files Analyzed

L2.8 7.11 Package Home Page

L2.9 7.13 Concluded License

L2.10 7.15 Declared License

L2.11 7.16 Comments on License

L2.12 7.17 Copyright Text

L2.13 7.20 Package Comment

L2.14 7.21 External Reference Field

L3.1 10.1 License Identifier

L3.2 10.2 Extracted Text

https://spdx.github.io/spdx-spec/v2.3/SPDX-Lite/#g3-table-of-spdx-lite-fields

128

Excursus

SPDX subclause Field name

L3.3 10.3 License Name

L3.4 10.5 License Comment

An SBOM always refers to a specific software artefact. This can be, for example, a

software binary that is created for deployment in production, or a specific release of an

open source project.

It is important that the SBOM for the given artefact represents a complete list of all

software components contained. This is the only way to reliably answer questions

about security or licence compliance, for example.

Open source components are an important aspect of SBOMs. They will dominate most

SBOMs in number. But proprietary and self-developed components must also be

covered to ensure completeness and to apply consistent approaches and tools.

Depending on the question, a different scope of SBOMs may be necessary. From a

licensing perspective, for example, the list of all delivered components is often

sufficient. From a security point of view, it may also be necessary to record compo-

nents used in a building environment.

It must also be delineated which data belong in an SBOM and which are kept separate-

ly. Since the SBOM reflects the state of a software artefact, the life cycle of the SBOM

should be the same as that of the artefact. This means that static information, such as

licensing information, should be recorded in the SBOM, but dynamic information, such

as what vulnerabilities are contained in the components, is better maintained separately.

9.2.3 How is incompleteness
dealt with, how is it documented?

In some cases, it may be difficult, impossible, or not economically feasible to conduct a

complete survey. This should be documented accordingly so that the »known

unknowns« are also recorded. In the SPDX format, for example, there is the possibility

to mark data fields as »NOASSERTION« to make it transparent that no licence informa-

tion has been recorded (which is not the same as a component without a licence).

129

Excursus

9.2.4 How is an SBOM generated?

In many cases, software contains a very large number of components. Even simple

Javascript applications often have over 10,000 dependencies, and even in more con-

servative ecosystems like Java, applications often consist of hundreds of components.

This figure can only be handled economically through automation. In individual cases,

a manually created SBOM may also serve its purpose, but complete coverage is only

possible through the use of appropriate tools.

There is very active development in the area of SBOM tools, both by manufacturers of

proprietary offerings and in the open source community.

Depending on the deployment scenario, language ecosystem and concrete software

products, different solutions are available. It is recommended to look for pragmatic

solutions that address the needs of development teams to ensure that SBOMs are

actually generated and that the necessary effort is kept within limits. Due to the

dynamic nature of the market and the rapid evolution of the topic, it is also recom-

mended to maintain flexibility in terms of tools and focus on standard formats and

APIs. More on this in the section ↗ Tools for managing SBOMs.

Existing and especially older software can pose a challenge here in SBOM creation.

With modern production models, such as DevOps, it is quite easy to build appropriate

tools into existing automation. With other models, this can be more difficult.

9.2.5 How is an SBOM transmitted?

SBOMs are generated as part of the software production process. In order for them to

be usable for software consumers, they must be made available to them in a suitable

way. There is still little standardisation for this beyond the data formats. To guarantee

the integrity of SBOMs, it is advisable to protect them with digital signatures and to

verify signatures accordingly when using them145.

145 This can be done, for example, by using ↗ tools of the SigStore project.

C:\github\workspace\html2pdf12-0.html#sbom-tools
https://docs.sigstore.dev/cosign/other_types/#sboms-software-bill-of-materials

130

Excursus

9.2.6 How is a metric defined for the reliability
and trustworthiness of a 3rd party
delivery of an SBOM?

There is always the risk that an SBOM is incomplete or faulty – be it due to inadequa-

cies or problems in SBOM creation or also due to deliberate manipulation. Therefore,

it is necessary to assess the trustworthiness of supplied SBOMs and to ensure the

reliability of self-generated SBOMs.

9.2.7 What standards and formats are used for
SBOMs?

Two main standards for SBOMs have become established. The ↗ SPDX standard,

supported by the Linux Foundation, which has also been recognised as the ISO stand-

ard ISO/IEC 5962:2021 since 2021, and CycloneDX, which originates from the ↗ OWASP

community. There is also ↗ SWID, which, however, has a rather subordinate signifi-

cance in the area of SBOM.

In addition to the data model, the standards define various exchange formats, such as

JSON or RDF, so that efficient machine processing and exchange of SBOMs is possible.

Tools also exist for converting between different formats.

In addition to the standards for the SBOM as a document, standards for individual

elements are also relevant. One of these is ↗ SPDX Id, which creates unique identifiers

for open source licences. The other is ↗ package URL, which can be used to uniquely

identify software packages. Both standards are used in SPDX and CycloneDX.

9.2.8 How are SBOMs managed in the company?

SBOMs must be managed in the context of the associated software artefacts.

They unfold their benefits from two perspectives:

For an individual software artefact, they offer a way to make its composition and

origin transparent. This can be used to answer specific questions about a particular

piece of software. This can be useful for a development or operations team dealing

with that software.

https://spdx.dev/
https://owasp.org/
https://owasp.org/
https://csrc.nist.gov/projects/Software-Identification-SWID
https://spdx.org/licenses/
https://github.com/package-url/purl-spec

131

Excursus

The aggregation of SBOMs for all software in use offers additional possibilities to

answer central questions – for example, how strongly a company is affected by a

certain software vulnerability or which dependencies exist with which software. In

this way, audit processes, for example on the topic of licence compliance, can also be

implemented and automated.

How SBOMs are managed in the company so that they can unfold their benefits

depends strongly on the technical environment, processes and organisation of a

company. The following issues play a role:

 ■ Integration into CI/CD infrastructure

 ■ Connection to asset management

 ■ Specifications and recommendations for action as to when SBOMs must be genera-

ted or procured and in what form.

 ■ Integration in ITIL

 ■ Lifecycle management

 ■ Standards and interfaces to store SBOMs and access the information they contain.

9.2.9 Analysing and visualising SBOMs

The machine-readable format of SBOMs makes it possible to effectively analyse or

visualise the information they contain. This can be done through generic data manage-

ment tools that work on the JSON format, for example, through specific scripts or

through specialised tools for SBOM analysis.

9.2.10 Tools for managing SBOMs

There are a number of tools that can be used in the management of SBOMs. The

market is very much in flux and a lot of development is taking place in both proprietary

and open source tools.

No clear recommendation can be made as to which tools a company should use. This

must be analysed and decided in the respective environment. The classification of

tools according to different fields of application can be helpful (source: ↗ »SBOM Tool

Classification Taxonomy«, NTIA SBOM Formats & Tooling Working Group): SBOM Tool

Classification.

https://www.ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-2021mar30.pdf

132

Excursus

A tool overview from the perspective of the two SBOM standard formats can be found

at ↗ SPDX-Tools and ↗ CycloneDX-Tools.

9.2.11 What should be considered when procuring
software from suppliers in terms of SBOM?

Supplied software often represents a »black box«, where it is not recognisable how it

was developed, which components are used and where these components come from.

Open source licences usually require that at least licence texts are delivered with the

software.

However, this usually does not allow conclusions to be drawn about the exact compo-

sition and versions of components. An SBOM can fill this gap.

It is not yet a matter of course that software is supplied with an SBOM as an »ingredi-

ents list«. Some software manufacturers are moving in this direction and provide

SBOMs or comparable information on their own initiative. For this to happen across

the board, however, software buyers must demand it on a broad scale.

In some areas, this is done through general requirements, such as the US Executive

Order. It will make it mandatory to include SBOMs for software delivered to public

bodies.

As a rule, however, it will be up to the individual design by companies how the availa-

bility of SBOMs can be enforced. This can be required as standard in contracts with

suppliers, for example.

In the case of Open Source Software, the availability of the source code often makes it

possible to create SBOMs oneself, so that information from manufacturers can be

checked or missing information can be added.

A standard approach is defined in the ↗ OpenChain specification, which describes the

handling of Open Source Software in the supply chain. It has also been available as

standard ISO/IEC 5230 since 2021.

https://tiny.cc/SPDX
https://tiny.cc/CycloneDX
https://www.openchainproject.org/

133

Excursus

9.2.12 What should be considered when delivering
software to third parties in terms of SBOM?

Making SBOMs mandatory in the delivery of software is a requirement for software

producers. They must integrate the generation and delivery of SBOMs into their software

creation and delivery processes. To ensure complete and accurate informationc,

it is essential to automate these processes.

9.2.13 Classification of initiatives on SBOMs:
What is happening in America, what is
happening in Europe and especially in
Germany?

The presidential decree 14208 mentioned at the beginning has triggered a strong

preoccupation with the topic of SBOM in the USA. The perspective that software used

in public administration must necessarily come with an SBOM puts pressure on soft-

ware vendors. This is both a challenge and an opportunity to develop processes, proce-

dures and tools for dealing with SBOMs and to bring them to a high level of maturity.

This is creating a strong dynamic in the American market.

The topic is also very present in the open source community. Projects like Kubernetes

have now made the creation of SBOMs part of their release process (See ↗ »We Built

the Kubernetes SBOM and Now You Can Write Your Own!«, Adolfo García Veytia), there

are a growing number of open source tools for dealing with SBOMs and the topic is

also addressed in initiatives such as the ↗ Open Source Security Foundation (OpenSSF),

founded in 2020.

One initiative that has very strong industry support is ↗ »The Open Source Software

Security Mobilization Plan«, backed by OpenSSF and several dozen technology compa-

nies. Under this plan, $150 million will be made available to increase the security of the

software supply chain. SBOM is one of the 10 »streams« of the plan.

At European level, there is the Network and Information Security (↗ NIS) Directive,

which is the first approach to set cybersecurity standards at European level. An updat-

ed version (NIS2) is currently being voted on. It adds a promotion of open-source

cybersecurity tools, in particular to give small and medium-sized enterprises access to

adequate tools. However, the directive does not address the issue of SBOM.

https://www.youtube.com/watch?v=N0ZNdnnHL40
https://www.youtube.com/watch?v=N0ZNdnnHL40
https://openssf.org/
https://openssf.org/oss-security-mobilization-plan/
https://openssf.org/oss-security-mobilization-plan/
https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)689333

134

Excursus

One EU initiative is the ↗ Cyber Resilience Act, which is available in draft form. It direct-

ly addresses the security of digital products by obliging manufacturers to take security

measures and providing consumers with transparency about security-relevant aspects

of products. The draft provides for SBOM as a means to achieve this. An interesting

aspect of the draft is that it exempts Open Source Software that is not developed in a

commercial context from many obligations that are required in a commercial context.

9.2.14 Outlook: How will the SBOM
issue develop?

The topic of SBOM has gained considerable momentum in recent years. It is widely

discussed and there are many proposed solutions for various aspects. Much of this is

still at an early stage of development and approaches still need to be tested and

mature. However, there are already some examples where SBOMs are being used in a

resilient way.

An SBOM in itself does not solve any problem, but it creates the basis for creating

added value with standardised and automated methods. This can be the detection and

elimination of vulnerabilities, the analysis and quantification of risks arising from the

software supply chain, or the assessment and handling of compliance aspects, such as

open source licences.

Since this requires the interaction of all the open source projects, manufacturers and

consumers involved in software supply chains, it seems inevitable that standards will

prevail that ensure interoperability of different tools and SBOMs from different sources.

The community and industry are well advised to work in this direction.

The large number of open source components results in strong pressure for automa-

tion. The SBOM concept will only be successful if it is not a major burden in the devel-

opment, delivery and use of software. This can be achieved through automation and

good integration via standard formats and interfaces.

https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act

135

Excursus

9.2.15 References

 ■ ↗ SBOM page of the NTIA – Overview page of the US National Telecommunications

and Information Administration on the subject of SBOM with quite in-depth basic

material.

 ■ ↗ SBOM page of CISA – Overview page of the US Cybersecurity & Infrastructure

Agency with information on the implementation of the SBOM concept.

 ■ ↗ The State of Software Bill of Materials (SBOM) and Cybersecurity Readiness –

Report of the Linux Foundation on the State of the Topic SBOM in the Industry

 ■ ↗ Finding vulnerabilities with a SBOM – example of how SBOMs can be used to find

vulnerabilities

 ■ ↗ Awesome SBOM – Curated list of materials on SBOM.

 ■ ↗ Software Component Transparency: Healthcare Proof of Concept Report – One of

the early documents from which the idea of SBOM originated.

https://ntia.gov/SBOM
https://www.cisa.gov/sbom
https://www.linuxfoundation.org/research/the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness
https://security.googleblog.com/2022/06/sbom-in-action-finding-vulnerabilities.html
https://github.com/awesomeSBOM/awesome-sbom
https://www.ntia.gov/ﬁles/ntia/publications/ntia_sbom_healthcare_ poc_report_2019_1001.pdf

136

Appendix

Appendix

137

Appendix

List of abbreviations
AGB

General terms and conditions

ASP

Application Service Providing

BGB

Civil Code

BHO

Federal Budget Code

**Copyright Act

Copyright and Related Rights Act

CPU

Central Processing Unit

FAQ

Frequently Asked Questions

FOSS

Free and Open Source Software

Gem HVO NRW

Ordinance on the Budgetary System of the Municipalities

in the State of North Rhine-Westphalia

GWB

Act against Restraints of Competition

HGrG

Law on the Principles of Federal and State Budgetary Law

LHO NRW

State Budget Code of the State of North Rhine-Westphalia

LTS

Long Term Support

OSD

Open Source Definition of OSI

138

Appendix

OSI

Open Source Initiative

OSS

Open Source Software

PatG Patent Act SäHO

Financial Regulation of the Free State of Saxony

SBOM

Software Bill of Materials

SPDX

Software Package Data eXchange

UWG

Unfair Competition Act

VOL/A

Vergabe- und Vertragsordnung für Leistungen – Teil A für Vergabe öffentlicher

Auftraggeber bei Liefer- und Dienstleistungsaufrägen (Public Procurement and Contract

Regulations for Services – Part A for Procurement by Contracting Authorities for

Supplies and Services)

139

Appendix

Bibliography and source list

[1] Benkard, Georg et al: Patent Act, Utility Model Act, Patent Costs Act; Commenta-

ry; 10. Aufl.; Verlag C. H. Beck, Munich 2006

[2] Gerlach, Carsten: Vergaberechtsprobleme bei der Verwendung von Open-Source-

Fremdkomponenten, in Computer und Recht 2012 (Heft 10), S. 691 – 696.

[3] Heiermann, Wolfgang/Zeiss, Christopher (eds.): juris PraxisKommentar Vergabe-

recht, 4th edition, Verlag Juris Saarbrücken 2013

[4] Institute for Free and Open Source Software Legal Issues (various authors): Die

GPL kommentiert und erklärt, 1st edition March 2005.

[5] Jaeger, Till/Metzger, Axel: Open-Source- Software – Rechtliche Rahmenbedingun-

gen der Freien Software, 3. Auflage, Verlag C. H. Beck, Munich 2011

[6] Lamon, Bernard: Le droit des licences Open Source, Version 1.1 (August 2009); (on

the Internet at: ↗ http://www.julienbonnat.fr/wp-content/uploads/2009/07/

livre-blanc- v3-aout-2009.pdf

[7] Laurent, Phillippe: »Open-Source-/Content Licenses before European Courts«,

EOLE 2012; (on the internet at: ↗ https://www.slideshare.net/OpenWorldFo-

rum/12-foss-licences-before- courts-in-europephilippe-laurent-eole2012)

[8] MPEP: Manual of Patent Examining Procedure, Manual for Examiners of the US

Patent Office, (on the Internet at: ↗ https://www.uspto.gov).

[9] Picot, Henriette: »Die deutsche Rechtsprechung zur GNU General Public License«,

in: Open- SourceJahrbuch 2008, p. 184 ff.

[10] Reincke, Karsten/Sharpe, Greg: Open-Source-License Compendium – How to

Achieve Open-Source- License Compliance, Darmstadt, Bonn 2015;

(on the internet at: ↗ https://github.com/telekom/oslic)

[11] Schöttle, Hendrik: Der Patentleft- Effekt der GPLv3, in: Computer und Recht

1/2013, p. 1 ff.

http://www.julienbonnat.fr/wp-content/uploads/2009/07/livre-blanc- v3-aout-2009.pdf
http://www.julienbonnat.fr/wp-content/uploads/2009/07/livre-blanc- v3-aout-2009.pdf
https://www.slideshare.net/OpenWorldForum/12-foss-licences-before- courts-in-europephilippe-laurent-eole2012
https://www.slideshare.net/OpenWorldForum/12-foss-licences-before- courts-in-europephilippe-laurent-eole2012
 https://www.uspto.gov
https://github.com/telekom/oslic

140

Appendix

[12] Van den Brande, Ywein/Coughlan, Shane/Jaeger, Till (eds.): The International Free

and Open-Source Software Law Book, 2nd edition 2014; (on the internet at:

↗ https://github.com/IFOSSLawBook/ifosslawbook).

[13] Working Group Public Affairs of the OSB Alliance (author: Till Jaeger): Handouts

on the use of EVB-IT when using Open Source Software, 2018 (on the internet at:

↗ https://osb-alliance.de/wp- content/uploads/2018/10/201805_OSBA_Handrei-

chung_EVB-IT.pdf).

[14] Wuermeling, Ulrich/Deike, Thies: »Open Source Software: A Legal Risk Analysis«;

in: Computer und Recht 2/2003, p. 87 ff.

Literature Additions

[1] Cluster Mechatronik & Automation e.V., Open-Source-Software, Leitfaden zum

Einsatz in Unternehmen, 2nd extended edition, 2014 (on the Internet at:

↗ http://www.cluster- ma.de/publikationen/leitfaden-oss-2-erweiterte- ausga-

be/index.html).

[2] Susanne Strahringer (ed.): Open Source – Konzepte, Risiken, Trends, Praxis der

Wirtschaftsinformatik, HMD 283, 2012, dpunkt.verlag.

[3] international FOSS law review: ↗ http://www.ifosslr.org/ifosslr (Despite the lack

of new publications since 2014, this site offers a wealth of legal information on

Open Source Software).

https://github.com/IFOSSLawBook/ifosslawbook
https://osb-alliance.de/wp- content/uploads/2018/10/201805_OSBA_Handreichung_EVB-IT.pdf
https://osb-alliance.de/wp- content/uploads/2018/10/201805_OSBA_Handreichung_EVB-IT.pdf
http://www.cluster- ma.de/publikationen/leitfaden-oss-2-erweiterte- ausgabe/index.html
http://www.cluster- ma.de/publikationen/leitfaden-oss-2-erweiterte- ausgabe/index.html
http://www.ifosslr.org/ifosslr

141

Appendix

Glossar
Branch

In the version control systems typically used for software development, the directory structure used to organize the source code of a

development project is referred to as a tree. A sub-project or task then branches off from this tree and thus enables the development

of features or fixes in its own branch, largely independent of the rest of the project. When a branched-off development is completed,

the results are then merged with another branch or with the main branch using a ↗ merge.

Code-of-Conduct

A code-of-conduct is a code of behavior or a behavioral guideline. This document defines expectations for the behavior of partici-

pants in a community.

Community

In the context of open source, a community is a group of people in the environment of an open source project. The community uses a

specific open source software, participates in its development and can also support the project in other ways.

Contribution

A contribution is a person's or group's contribution to the content of an open source project. This could be source code, documentati-

on or graphics, for example.

Contributor License Agreement

A Contributor License Agreement (CLA) is a legal agreement in which the conditions for the contribution are defined.

Copyleft

The copyleft is a condition of some open source licenses. If an open source license with a copyleft condition applies, this software,

changes to the software and works derived from the software must always be distributed under the same open source license. For

example, the GNU General Public License version 2 (GPL-2.0) contains a copyleft condition. The copyleft exists in various forms.

Depending on how it is structured, the copyleft can, for example, only affect changes to the software itself (so-called weak copyleft)

or also extend to the software development in a derived work (so-called strong copyleft).

(See chapter 7.2 License types and compliance activities)

De facto standards

De facto standards are standards that have become established due to their widespread use and acceptance. In contrast, de jure

standards are developed and approved by acknowledged standardization organizations.

Distribution / Distributor

Referring to software and associated artifacts, distribution usually includes installable packages with executable files and documen-

tation, but can also extend to source code, configuration and the like. Usually, the term is used in the sense of distribution to end

users. This can be done free of charge by a community or as a commercial offer from a manufacturer, often combined with additional

services.

The distributing party is called the distributor.

Depending on the context, the term can also refer to the complete set of distributed artifacts, for example when using the term

»Linux distribution«.

142

Appendix

Downstream

The terms upstream and downstream are used in relation to the development and distribution of open source software.

Downstream refers to branches or derivatives of software that were originally created by third parties. Examples are packages

or ↗ forks generated from the software for distribution and adapted versions of software. A downstream project uses the code of an

upstream project as a starting point for its own developments. This is, for example, a commercial product derived from the upstream

project.

Fork

A fork refers to the derivation of a software project into subsequent projects that can develop in alternative ways. The original

project, from which the fork is created is the ↗ upstream project and the fork is the ↗ downstream project. A fork can also develop

incompatibly with the original project and thus become independent. On the GitHub platform, the term 'fork' is generally only used

for a temporary, technical derivation of the original project in order to submit a change and not for an independent development. It is

used, for example, in a ↗ merge with a ↗ »feature branch« via a so-called pull request.

Foundation (Open Source)

A foundation in the context of open source is a non-profit organization that aims to support and promote open source projects. It

provides legal, financial, organizational, technical and content-related support to ensure the development and sustainability of open

source software. Foundations help to protect the interests of the community, facilitate collaboration, represent projects to the public

and stakeholders and also set standards.

Governance

Governance in open source refers to the framework, rules, (best) practices and processes that govern the development, use and

management of open source software projects. The aim is to ensure the quality, security and sustainability of the software while

promoting collaboration, distribution of responsibilities, participation and involvement of the community. Governance also determi-

nes how decisions are made, who is responsible for making them and how contributions are managed.

Inbound Open Source

Refers to the approach of using open source software to create and/or as a component of one's own products or services. This allows

companies and other organizations to reuse open source software instead of having to develop their own solutions. Inbound refers

to the direction of flow of software from outside the organization to the inside. The opposite direction is called ↗ outbound open

source.

Merge

A merge refers to the integration of changes to the source code in software projects, such as combining updates from seve-

ral ↗ branches or incorporating changes from an ↗ upstream project. Technically, this is enabled by ↗ version control systems and

supported by pull requests (GitHub) or merge requests (GitLab), which offer the option of checking the source code before merging.

Open source license

Open source licenses are a category of software licenses. They allow anyone to run, analyse, adapt and redistribute the software (the

so-called four freedoms), thus including access to the source code. The use may not be tied to the payment of a license fee, no one

may be excluded from using the software and it must be possible to use it for any purpose. Well-known open source licenses include

the GNU General Public License (GPL), the Apache v2.0 License and the MIT License. The Open Source Initiative (OSI) maintains a list of

open source licenses.

(See chapter 2.2: Concept and definition of open source software)

143

Appendix

Open source project (community, technology)

An open source project describes both the software itself and the community that develops and maintains it. In contrast to proprie-

tary software, the source code is generally openly accessible and can be viewed, edited and redistributed by anyone. This openness

enables collaborative development in which anyone with skills and interest can participate. The guiding principles of this collaborati-

on are defined by an open source license that specifies the rights and obligations of users.

Outbound Open Source

Refers to the approach of contributing to an open source project (see Contribution) or initiating one's open source projects. Compa-

nies and other organizations can use contributions to add missing functionalities in open source projects that they use (see Inbound

Open Source). Starting one's open source projects, i.e. publishing software under an open source license, enables collaboration across

companies and organizations, promotes innovation and strengthens trust in the software. Outbound refers to the direction in which

the software flows out of the organization.

Patches (as a contribution)

The figurative patch to repair or rectify a bug or defect refers to a completed change to the content of software. In the context of

open source developments, such changes are created by a person or group and are practically submitted to the project from outside

as a change proposal in the public development process. By transferring a change to the open source project via the merge process,

the patch is added to the upstream project as a contribution.

Proprietary

In contrast du open source, the term proprietary is used for software in which the rights holder reserves significant rights and does not

grant users the full freedom as with open source software. The source code of proprietary software is usually not publicly accessible.

Release

A release is a specific development status of software that is made available to users by the developing team. This usually involves

creating additional release artifacts, such as downloadable archives that contain the corresponding status of the software and

release notes with documentation of the changes compared to previous releases.

Releases are usually labelled with version numbers or similar identifiers, which are used for the exact identification of certain

releases and they also enable a chronological classification of different releases or the scope of changes between releases.

Repository

Repository is the technical term for the place where the code of a software project is managed. This term usually refers to the source

code, but there are also repositories of other artifacts, such as installable software packages. The term has its origin from the field of

version control systems.

Software Bill of Materials

A software bill of materials (SBOM) contains entries for all parts or components of a software. The entries contain the unique name

and version of the software components. The SBOM entries also contain the license that applies to the software component. There

are several standards for formatting and exchanging SBOMs.

(See chapter 9.2: Software Bill of Materials (SBOM))

Software component

Software is usually made up of a large number of components, which generally come from different sources and are developed

independently of each other. In this guide, we consistently use the term software component, while an alternative term is software

module, which is also commonly used in some programming language ecosystems.

144

Appendix

A large proportion of these software components are libraries, i. e. collections of functions that programmers can use when develo-

ping software. However, there are also other types of components that provide tools that can be integrated at runtime, etc.

Software components do not necessarily have to be open source, but in current software development by far the largest proportion

of components used are under an open source license.

Software supply chain

A software supply chain 1 consists of the components, tools and processes as well as organizations that are used or involved in the

development, creation and publication of a software artefact. See also ↗ Software Bill of Materials.

Software package

A software package is a software component that is distributed in an easy-to-use form. This is usually done using a package manager

that is part of the operating system or is available as a standard tool of a language ecosystem. The creation of a package, known as

packaging, is often a core activity of a distributor.

Upstream

The terms upstream and downstream are used in relation to the development and distribution of open source software.

Upstream refers to the main development branch or source of software that is managed by the original developers or the official

project community. New features, bug fixes and other changes are often made in the upstream branch and may be adopted by

downstream projects.

Version control system

A version control system is the system used to manage the source code of software. All changes are recorded in specific versions,

including information about the author and time of the changes, so that the history of a software project can be tracked seamlessly.

Version control systems also enable controlled collaboration between several people on the same software project. Different bran-

ches of development can be mapped and tools are available to merge branches again and resolve any conflicts that may arise.

The currently most popular version control system is ↗ git and platforms based on it such as ↗ GitHub and ↗ GitLab.

Footnotes

1. ↗ Software supply chain at Wikipedia

https://git-scm.com/
https://github.com/
https://gitlab.com/
https://de.wikipedia.org/wiki/Software-Lieferkette

145

Appendix

Keywords glossary

A

Apache-2.0 94, 95, 103, 110

Apache license 95

Approval 17, 39, 89

Automation 59, 140

B

Berkeley Software Distribution Licenses

95

BSD 31, 94, 95, 103, 112, 120, 121

BSD-2-Clause 95

BSD-3-Clause 95

BSD license 95, 103

Business case 25

C

CLA 37, 53, 55

Cloud 52, 66, 107

Cloud Native 52, 66

Code 16, 18, 19, 20, 21, 22, 23, 33, 34, 37,

39, 40, 43, 44, 47, 49, 50, 52, 53, 54, 56, 59,

74, 85, 89, 90, 91, 92, 93, 94, 95, 96, 97,

99, 103, 104, 116, 119, 120, 121, 122, 124, 132

Collaboration 58

Container 41, 42

Contribution 49

Contribution pyramid 49

Copyleft 93, 94, 96, 98

Core Infrastructure Initiative 37

Creativity 60

D

Debian Free Software Guidelines 122

Dual licensing 72

E

Eclipse Foundation 34, 49, 84

Eclipse Public License 97

European Union Public License 97, 98

F

Financial 36, 138

Firefox 97, 122

Forks 97

FOSSology 39, 97

Foundations 51, 84, 97

Free Software Foundation 16, 54, 97, 121

G

Github 77, 97

glibc 97, 108

GNU Affero General Public License 97

GNU General Public License 97, 98, 121,

139

GNU Lesser General Public License 97

Governance 36, 49, 52, 97

I

ifrOSS 97, 100

InnerSource 85, 97

Intellectual property rights 97

J

Javascript 97, 103, 104, 129

K

Kernel 97

Kubernetes 15, 97, 133

L

Liability 97

libc 97, 108

Licence costs 97

Licence interpretations 97

Licence management 38, 45, 83, 97

Licence text 97

License 17, 18, 53, 88, 90, 92, 93, 94, 95,

97, 98, 101, 102, 121, 127, 128, 139

License agreements 97

License fees 97

Licensing business 97

Linux 14, 32, 34, 40, 42, 43, 45, 49, 51, 53,

67, 68, 72, 83, 84, 97, 101, 107, 114, 119, 120,

121, 122, 123, 124, 130, 135

Linux Professional Institute 32, 97

Long Term Support 33, 34, 97, 137

LPI 32, 97

M

Maintenanc 97

Maven 97, 106, 107

Microservice architecture 97

Microsoft Reciprocal License 97

MIT license 87, 95, 97, 103, 104, 111

Mozilla Public License 97

MS-PL 94, 95, 97

O

OpenChain 35, 97, 100, 101, 102, 115, 132

OpenChain project 97, 100

Open Compliance Program 40, 97

Open core 97

Open core model 97

OpenJDK 97, 108

Open Practice Library 60, 97

open source communities 63, 67, 68, 71,

75, 97

open source compliance 35, 40, 43, 88,

90, 91, 92, 97, 100, 101, 102, 106, 107, 115

open source compliance artifact know-

ledge engine 97, 102

Open Source Definition 16, 97

Open source foundations 84, 97, 116

Open Source Governance 49, 97

Open Source Initiative 16, 17, 63, 89, 97,

100, 122, 137

Open source license 94, 97

Open source license classification 94, 97

Open Source Monitor 12, 14, 97, 114

Open Source Program Office 81, 83, 97

Open Source Review Toolkit 39, 97, 102

Open Source Software 12, 14, 16, 36, 44,

46, 65, 77, 79, 89, 97, 100, 122, 123, 133,

138, 139, 140

P

Patent clauses 97, 110

Patent law 110

146

Appendix

Patent license 97

Patents 97, 110

Paying by doing 88

Permissive licenses 94, 95, 97

PHP-3.0-License 95, 97

Platform software 67

R

Royalty-free 53, 116

S

Supply chain 22, 29, 35, 42, 43, 109, 115,

116, 126, 132, 133, 134

Sustainability 24, 36, 47

Bitkom e. V.

Albrechtstraße 10

10117 Berlin

T 030 27576-0

bitkom@bitkom.org

Bitkom represents more than 2,200 member companies in the digital sector. In Germany,

they generate around 200 billion euros in turnover with digital technologies and solutions and

employ more than two million people. Our members include over 1,000 mid-size companies,

500 start-ups, and nearly all global players. They offer software, IT services, telecommunication or

internet services, manufacture devices and components, are active in digital media, create content,

offer platforms, or are otherwise part of the digital economy. Eighty-two percent of the companies

involved in Bitkom have their headquarters in Germany, another 8 percent come from the rest

of Europe, and 7 percent are from the USA. Three percent come from other regions of the world.

Bitkom promotes and pushes the digital transformation of the German economy and supports

broad societal participation in digital development. The goal is to make Germany a powerful and

sovereign digital location.

bitkom.org

	Foreword
	Acknowledgement
	Changelog

	1	Introduction | Preface
	2	Info & Basics
	2.1	Relevance of
Open Source Software
	2.2	Concept and Definition of
Open Source Software
	2.3	Opportunities and
challenges
	2.3.1	Opportunities
	2.3.2	Challenges

	3	Benefits of
Open Source Software
	3.1	Strategy examples for
the use of
Open Source Software
	3.1.1	General rejection
	3.1.2	No open source in own products
	3.1.3	Only selected open source licences in
own products
	3.1.4	Selected Open Source Licences in
Selected Products
	3.1.5	General acceptance of open source in
own products
	3.1.6	Openly strategic use of open source in
own products

	3.2	Standardisation and
customer protection
	3.2.1	Certifications
	3.2.2	Support services for Open Source Software
	3.2.3	Long Term Support
	3.2.4	Protection against third-party claims

	3.4	Licence Management
and Compliance
	3.4.1	Recording of licences used
	3.4.2	Resilience of licensing information
of diﬀerent open source ecosystems
	3.4.3	Container compliance
	3.4.4	Implementation and Management of Licence Interpretations
	3.4.5	Possibilities for implementing licence interpretations
	3.4.6	Veriﬁcation and recording of conversion
to delivery

	4	Creating
Open Source Software
	4.1	Open Source Governance
	4.1.1	Contribution pyramid
	4.1.2	Projects with informal governance
	4.1.3	Charter-based open source projects
	4.1.4	Foundation-based open source projects
	4.1.5	Openness of governance models
	4.1.6	Split of open source projects
	4.1.7	Handling IP and copyrights
	4.1.7.1	Assignment of »copyright«:
Individual or Entity
	4.1.7.2	Protection against third-party »copyright«

	4.2	How can businesses participate in open source projects/Contributions
	4.2.1	Open Source Participation from an Economic Perspective

	4.3	Collaboration Tooling
	4.3.1	Communication
	4.3.2	Tool chain
	4.3.3	Creativity

	4.4	Conclusion

	5	Business models
around
Open Source Software
	5.1	Business models with
Open Source Software
	5.1.1	Services with Open Source Software
	5.1.2	Open Source Software as a Service
	5.1.3	Products with Open Source Software
	5.1.4	Open Source Software as enabler
for other business models

	5.2	Risk assessment with
regard to the use of
Open Source Software
	5.2.1	Participation in platform
Open Source Software
	5.2.2	Participation in vertical
open source projects

	5.3	Services for
Open Source Software
	5.3.1	Support
	5.3.2	Development
	5.3.3	Operation and provisioning
	5.3.4	Maintenance
	5.3.5	Consulting
	5.3.6	Certiﬁcation
	5.3.7	Training
	5.3.8	Dual licensing

	5.4	Further models
	5.4.1	Donation-based ﬁnancing model
	5.4.2	Foundation Model

	6	Strategic
Consideration of
Open Source
	6.1	Open Source Software
in the Company
	6.2	Open Source Strategy Development in the Company
	6.2.1	Basic Consideration of an
Open Source Strategy
	6.2.2	Strategic directions
	6.2.3	Goals of an open source strategy
	6.2.4	Résumé and necessity of an
open-source strategy

	6.3	Open Source Program Oﬀice (OSPO)
	6.3.1	Tasks of an OSPO
	6.3.2	Organisational Aspects of an
Open Source Program Oﬀice

	6.4	Open Source Foundations
	6.5	InnerSource

	7	Open source
compliance
	7.1	Open source compliance
as a task
	7.2	License types and compliance activities
	7.2.1	The copyleft eﬀect
(as a demarcation criterion)
	7.2.2	Open source license typology
	7.2.3	Compliance obligations in the overview

	7.3	Open source compliance tools
	7.3.1	Training
	7.3.2	Advice
	7.3.3	Tools

	7.4	Special challenges
	7.4.1	SPDX and license naming
	7.4.2	The Javascript challenge
	7.4.3	The AGPL or network usage as a compliance trigger
	7.4.4	(L)GPL-v3 and replaceability
	7.4.5	Open source compliance, automatic updates and CI/CD chains
	7.4.6	Maven or automatic package
aggregation
	7.4.7	Compliance in the Cloud: Virtual Machines
	7.4.8	The strong copyleft without a strong copyleft
	7.4.9	Upstream compliance
	7.4.10	Export control
	7.4.11	Compliance and software patents

	7.5	The international
legal basis

	8	Outlook
	9	Excursus
	9.1	On the emergence of
Open Source Software
	9.1.1	From Unix to Linux
	9.2	A second and diﬀerent path led to Linux
	9.1.3	From »Free« to »Open«
	9.1.4	Generation GitHub

	9.2	Software Bill of Materials (SBOM)
	9.2.1	What is an SBOM and what purpose
does it serve?
	9.2.2	What data is contained in an SBOM?
	9.2.3	How is incompleteness
dealt with, how is it documented?
	9.2.4	How is an SBOM generated?
	9.2.5	How is an SBOM transmitted?
	9.2.6	How is a metric deﬁned for the reliability and trustworthiness of a 3rd party
delivery of an SBOM?
	9.2.7	What standards and formats are used for SBOMs?
	9.2.8	How are SBOMs managed in the company?
	9.2.9	Analysing and visualising SBOMs
	9.2.10	 Tools for managing SBOMs
	9.2.11	What should be considered when procuring software from suppliers in terms of SBOM?
	9.2.12	What should be considered when delivering software to third parties in terms of SBOM?
	9.2.13	Classiﬁcation of initiatives on SBOMs:
What is happening in America, what is happening in Europe and especially in Germany?
	9.2.14	Outlook: How will the SBOM
issue develop?
	9.2.15	References

	Appendix
	List of abbreviations
	Bibliography and source list
	Literature Additions

