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Introduction 

 

Nowadays progress in society, science, and technology is closely linked to the advances 

in IT and computing technologies. From healthcare to finance, transportation to 

manufacturing, agriculture to chemical industry: computing technologies affect 

almost every aspect of the modern economy. With the increasing complexity of 

problems, we seek to solve, as well as environmental impact of these technologies, 

there is a growing need for accessible, scalable, and more powerful computing that is 

also energy efficient. 

 

For over 60 years, progress in computing power was driven by Moore's Law, which 

states that the number of transistors on a microprocessor chip doubles every two 

years. Today, though, we are approaching the physically defined limitations of this law 

and it is becoming increasingly difficult to double computing power every two years. 

As a result, experts are discussing various computational concepts, architectures and 

platforms that could – in the mid and long term – further expand the boundaries of 

modern computing. 

 

In this paper we provide an overview of some of the most prominent technological 

approaches that promise to expand the current computing landscape by offering 

advantages in terms of computing power scaling, energy efficiency and applicability to 

a new range of problems. This includes new computing concepts such as quantum or 

neuromorphic computing as well as new computing platforms such as optical or 

chemical computing. 

 

It is important to note that all future computing concepts utilize at least one new 

approach on these levels of abstraction: 

 New basic concepts of computation e. g. based on quantum effects, based on 

principles of information processing inspired in the brain, based on non-

deterministic emergent effects or on the dynamics of chemical reactions. Each of 

these directions also requires new computer hardware architectures.  

 New platforms or information carriers: Some of these approaches require entirely 

new classes of devices e. g. molecule sensors in chemical computing, but most 

approaches can improve existing devices in a novel way (e. g. analog CMOS for 

neuromorphic computing or photonics for optical and quantum computing). 

 

Although each approach has its unique strengths and challenges, it is anticipated that 

the potential benefits will result from combining various technologies in an efficient 

manner. This paper will explore technological approaches across different levels of 

abstraction. However, providing a comprehensive description of every conceivable 

computing approach is beyond the scope of this paper. 

 

 

 

 

Our goal is to offer 

guidance to anyone 

who seeks to gain a 

better understanding 

of the currently 

emerging computing 

landscape and to help 

evaluate these 

approaches based on 

potential benefits for 

businesses in the 

future. 
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How to read this document 

 

In this paper, we categorize each future computing approach according to the 

framework presented below.  

 

 Short description: An overview of the respective computing approach and 

functionality, including an estimation of the current technology readiness level 

(TRL).  

 Benefits: Potential benefits of the technology as compared to classical digital 

computing available today. 

 Limitations: Inherent theoretical or physical limitations of the approach, e. g. in 

terms of problems classes the technology can address. 

 Applications and Use-Cases: Applications denote potential usage domains. A Use-

Case is a demonstrated proof-of-concept or an implemented solution (when 

available). 

 Energy Consumption Consideration: If at least a rough assessment about the energy 

efficiency (per computation) is available, it will be given. It is only an order-of-

magnitude assessment indicating, how efficient this technology is compared with 

others. 

 OS / Software: An outline of the software environment required for a particular 

technology. 

 Physical Area of Use: We differentiate between three main deployment and 

consumption options of the technology: cloud-based, on-premises, or edge 

computing. 

 Development Challenges: Existing technological challenges which needs to be 

overcome for a practical and industrial use of the technology. 

 

At the end of the paper, we provide a curated list of resources for further reading on 

each specific approach. 
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List of used abbreviations 

 

 

 ASIC - Application-specific integrated circuit 

 AI - Artificial Intelligence 

 CMOS – Complementary metal-oxide-semiconductor 

 CPU – Central processing unit 

 DNA – Deoxyribonucleic acid 

 DNN – Deep neural network 

 EU – European Union 

 FPGA – Field-programmable gate array 

 GPU – Graphic processing unit 

 IC – Integrated Circuit 

 IMC – In-memory computing 

 IMP – In-memory processing  

 MB – Megabyte. 1 MB = 1,024 kilobytes (kB) = 1, 048,576 bytes 

 ML – Machine learning 

 nm – Nanometer. 1 nm = 10-9 m 

 PIC – Photonic integrated circuit 

 PIM – Processing in memory 

 QC – Quantum Computing 

 QUBO – Quadratic unconstrained binary optimization 

 RAM – Random Access Memory 

 RNA – Ribonucleic acid 

 RSA – Rivest–Shamir–Adleman, a public-key cryptosystem 

 TRL – Technology readiness level 

 VMM – vector matrix multiplication 
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Technology readiness  

levels  

 

 

The Technology Readiness Level (TRL) scale was introduced into the EU funded projects 

arena in 2014 as part of the Horizon 2020 framework program1. This document uses 

the same scale with the following definitions: 

 

 TRL 1 – basic principles observed 

 TRL 2 – technology concept formulated 

 TRL 3 – experimental proof of concept 

 TRL 4 – technology validated in lab 

 TRL 5 – technology validated in relevant environment (industrially relevant 

environment in the case of key enabling technologies) 

 TRL 6 – technology demonstrated in relevant environment (industrially relevant 

environment in the case of key enabling technologies) 

 TRL 7 – system prototype demonstration in operational environment 

 TRL 8 – system complete and qualified 

 TRL 9 – actual system proven in operational environment (competitive 

manufacturing in the case of key enabling technologies or in space) 

  

 
1 TRL Scale in Horizon Europe and ERC - explained - Enspire Science Ltd. 

https://enspire.science/trl-scale-horizon-europe-erc-explained/
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Technology TRL Benefits Limitations Applications Area of Use Challenges 

Quantum 
Computing (QC) 

0 – 62  Solving bigger, more complex 
problems 

 Handling more data 

 High energy efficiency 

 Limited stability 

 Not a universal 
computer 

 No universal 
advantage 

 Optimization 

 Forecasting, 
scenario modelling 

 Chemical 
simulation 

 Cloud 

 On-premises 

 Edge 

 Hardware scaling 

 Identifying business-
relevant problems 

 Integration with classical 
computing 

 Quantum storage 

Neuromorphic 

Computing 

2 – 73  High energy efficiency 

 High processing speed  

 Robustness  

 Not efficiently 
representing numbers 

 Based on incomplete 
approximations of the 
brain 

 Medicine 

 Computer vision 

 Autonomous 
robots and self-
driving cars 

 Edge 

 Cloud 

 Distributing memory among 
multiple processors on a 
chip  

 Scalable messaging and 
interconnect architectures 

 New algorithms, software 
and design tools 

Optical 

Computing 

Analog  
7  Extremely parallelizable 

 Ultra-low power consumption 
and low latency 

 Mature fabrication nodes 

 Power loss during 
electronic-optical 
conversions 

 Deep learning 

 Data encryption 

 Cloud 

 Edge 

 Large area footprint  

 Scaling 

Digital 

4  Intrinsically low light-
light interaction 
hinders operation 

 

 General use  Cloud 

 On-premises 

 Alternative architectures 
needed 

 Chip integration and 
material development  

 Optical memory  

Digital Annealing 

9 (As compared to QC) 

 Full connectivity among bits  

 High precision in problem 
formulation  

 Large problem sizes solvable   

 No special environment 
needed  

 Restricted to 
combinatorial 
optimization problems 

 Close to optimal 
solution, no guarantee 
for the global 
optimum  

 Traffic flow 
optimization 

 Drug design 

 Portfolio 
optimization 

 Production 
planning  

 Cloud 

 On-premises 

 Not every combinatorial 
optimization problem is 
suited  

 Additional resources to 
formulate problems with 
higher order polynomials  

DNA Computing 

3 – 4  Extremely parallelizable 

 High energy efficiency  

 High storage density (for DNA 
storage) 

 Low signal 
propagation speed 
(hours) 

 Weak scaling  

 Propensity for discrete 
problems 

 Combinatorial 
problems, search, 
scheduling, 
clustering 

 Cryptography and 
intrusion detection 

 Cloud  Large-scale parallelization 
to compensate for slow 
signal propagation   

 Lowering the operation 
costs  

 Mapping business problems 

 
2 TRL depends on the physical realization of qubits (highest is for superconducting qubits) 
3 Differs for neuromorphic chips used for inference (TRL 6 – 7) and training (TRL 2 – 4)  
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1 Quantum Computing 

Dr. Jannis Ehrlich (Fraunhofer IWM),  

Dr. Oliver Oberst (IBM), Dr. Christoph  

F. Strnadl (Software AG) 

1.1 Short Description 

Quantum computing (QC) is computing based on direct manipulations of quantum 

systems by discretely transforming their respective quantum states4. Instead of bits 

with just the two states »0« or »1«, present in classical computers, quantum 

computers use qubits which can have any state in between including a phase, such 

that one needs two real numbers to exactly describe the state of a single qubit. Also 

contrary to normal bits, several qubits can be entangled leading to an inseparable 

multi-qubit state, which needs exponentially more parameters to be exactly specified.5 

A quantum computer is a statistical computer which returns the results of a 

(quantum) algorithm according to a certain probability distribution corresponding to 

the quantum state measured. Thus, the same instructions must be run many times to 

obtain a reasonable statistic for the »correct« (intended) result, and the resulting 

probability distribution must be post-processed for further computational use. 

Like classical computing, QC comprises hardware, software, and quantum algorithms. 

Quantum simulation is another important concept within the generic QC domain. It 

has no direct counterpart in classical computing and refers to purpose-built quantum 

computers whose computation is limited to the (extremely fast) simulation of another 

quantum system. 

As of today, many different physical realizations of quantum computers utilizing 

various hardware platforms, including e. g. ion traps, superconducting circuits, neutral 

atom arrays, various solid-state approaches, optical quantum computing etc. The 

question of the most economic quantum computing »hardware« has yet to be 

answered.  

Technology Readiness Level  

It strongly depends on the qubit realization technology, varying between 0 to 6 (7 

being the demonstration of »quantum advantage«).6 The quantum states are fragile 

leading to not negligible errors (see section Limitations), which in the future can be 

corrected by error correction. However, this approach might be superseded by error 

mitigation to reach quantum advantage. 

1.2 Benefits 

Quantum computing offers the promise of identifying and executing suitable 

(quantum) algorithms with significantly better scaling in problem size than classical 

 
4 adapted after N.D. Mermin 2007, Quantum Computer Science. 
5 Strnadl & Schöning (2022). Quantum Computing and Software AG. Part 1. 
6 Technology Readiness Level of Quantum Computing Technology (QTRL) (fz-juelich.de) 

https://www.fz-juelich.de/en/ias/jsc/about-us/structure/research-groups/qip/technology-readiness-level-of-quantum-computing-technology-qtrl
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computers. This allows computations on much more data and the solution to 

problems that are out of reach for classical computers.  

Furthermore, some quantum algorithms may provide a significant (polynomial or, in 

cases, even exponential) speed-up over conventional algorithms (i. e., dramatically 

reduced execution times). This feature of QC will widen the problem space towards 

more complex and longer-lasting algorithms including more data, larger systems, finer 

resolution, and better accuracy. Note that different hardware approaches to QC come 

with different additional benefits.  

1.3 Energy Consumption Considerations 

Based on the physical basic principles used by all technical implementations of 

quantum computing, the basic needed energy per computation operation is expected 

to be extremely low compared with state-of-the-art semiconductor technology. 

Nevertheless, a direct comparison between quantum computing and classical 

computing in terms of energy consumption is not possible up today, due to the 

different computation principles and the different kind of algorithms.  

Besides, the main secondary energy spent for quantum computing is in fact the need 

of expensive cooling needed for some of the QC realizations, such as superconducting 

circuits (10 mK), trapped ions (4-10 K) or quantum dots in silicon (ca. 1 K). To achieve 

that, rather expensive in terms of needed energy Helium-based cooling is today used.  

In addition to the cooling requirements, another factor that affects the energy 

consumption of quantum computing is the error correction process. Error correction is 

essential for ensuring the accuracy of quantum computations, but it requires 

additional qubits and computational overhead, which translates to higher energy 

consumption. Besides, QC could not run without classical IT to control, feed in and 

extract data. Despite these challenges, being “green” by physical principles quantum 

computing still offers the potential for significant energy savings compared to classical 

computing.  

1.4 Limitations 

 Quantum computing does not extend the limits of computability: It cannot 

compute what classical computers cannot – albeit much slower – compute.  

 Limited stability: Quantum computers easily interact with their environment in 

uncontrolled or uncontrollable ways. This interaction can change the values of 

individual qubits and even destroy the entire quantum state, including all the 

information stored in it. This phenomenon is called decoherence and makes the 

construction of quantum computers more challenging than classical computers. 

 Not a universal computer: The calculation model used by quantum computers is 

limited to a subset of algorithms7  that are known in classical computing. This 

means that while quantum computers can perform certain types of computations 

much faster than classical computers, there are still many tasks that a quantum 

computer cannot perform or for which a classical computer may be better suited. 

 
7 Unitary transformations on finite dimensional (mostly discrete) Hilbert spaces, a subsection of classical Linear 
Algebra (viz. matrix calculations). 
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As a result, a quantum computer is not a universal computer and is not well-suited 

for running universal computations. 

 It seems to be hard coming up with good quantum algorithms.  The lack of 

quantum algorithms readily applicable to business seems to stem from the fact 

that our mind is rooted in the classical (i.e., non-quantum) world. We readily employ 

classical Boolean (i. e., two-valued) logic, classical reasoning, and causality (if -then-

else) to cope with our environment – an approach, which has worked exceedingly 

well for our species for the last couple of 100,000 years. Classical thinking will only 

yield classical algorithms. 

 No universal quantum advantage exists. While quantum computers have the 

potential to provide significant speedups for certain types of problems, this 

advantage does not apply to all conceivable algorithms or problems. For example, 

while quantum computers are expected to provide a significant speedup for 

factoring large numbers and breaking certain cryptographic schemes, they may not 

provide any advantage for other types of problems. While this limitation may seem 

discouraging, it is also reassuring in cases, such as in cryptography, where it is 

known that no universal attack against any cryptographic scheme can exist.  

1.5 Applications  

 Optimization: Optimization problems are ubiquitous in many fields, from finance 

and logistics to transportation and resource management. In the field of risk 

analysis, for example, quantum computing can be used to analyze and manage risk 

in financial portfolios, helping investors to make more informed decisions. In traffic 

and routing, quantum algorithms can be used to optimize traffic flow and reduce 

congestion, leading to more efficient and sustainable transportation systems. In 

resource management, quantum computing can be used to optimize the allocation 

of resources, such as energy and water, to improve efficiency and reduce waste. 8 

 Forecasting and scenario modelling: Quantum computing has the potential to 

significantly improve forecasting in a variety of fields, including risk, weather, and 

traffic. In risk analysis, quantum computing can be used to perform financial risk 

analysis more quickly and accurately than classical computers. In weather 

forecasting, quantum computing can help improve the accuracy and resolution of 

weather models. Quantum computing can also aid in predicting traffic patterns, 

allowing for more efficient routing. In addition to these specific applications, 

quantum computing can also be used to develop more advanced forecasting 

techniques in general. Quantum computing can also be used to simulate different 

scenarios, such as the impact of natural disasters on infrastructure or the spread of 

a virus in a population9. 

 Simulation: Quantum computers can simulate the behavior of large, complex 

systems more accurately and quickly than classical computers, allowing researchers 

to study phenomena that would otherwise be too difficult to analyze. Quantum 

computing can be used to simulate the behavior of materials at the atomic level as 

well as chemical reactions and properties, which is essential in fields such as 

materials science and drug discovery.  

 
8 Example: Industry Quantum Computing Applications QUTAC Application Group 
9 Example: Forecasting financial crashes with quantum computing. R. Orus, S. Mugel, E. Lizaso 

https://www.qutac.de/wp-content/uploads/2021/06/QUTAC_Paper.pdf
https://arxiv.org/abs/1810.07690


Future Computing: Overview of Technological Landscape 

4 

 Further special algorithms: Quantum machine learning (e.g., very deep or complex 

models) 10, quantum AI (quantum neural networks), quantum multi-agent systems 

(e.g., with millions of agents), quantum chemistry, high energy physics. 

 Cryptography: Quantum computing has the potential to impact the field of 

cryptography. One of the most famous and widely used cryptographic protocols, the 

RSA algorithm, relies on the difficulty of factoring large numbers to provide 

security. However, Shor's algorithm, a quantum algorithm, is capable of factoring 

large numbers exponentially faster than any classical algorithm. This means that a 

quantum computer could potentially break RSA encryption, rendering it useless for 

secure communication. 

1.6 Physical Area of Use 

 Cloud: To overcome the inherent complexity of building and operating quantum 

computers, most organizations are likely to use them through cloud-based services 

offered by third-party providers. These services will expose the functionality of 

quantum computers through APIs that can be accessed over the public Internet. 

 On-premises: Option for organizations with dedicated capabilities, specialized 

requirements, and sufficient financial resources (research centers, universities, 

military and defense, public administration, banks). For example, banks could use 

on-premises quantum computers to create theoretically unbreakable cypher 

systems, while logistics providers could leverage the competitive advantage of 

sophisticated optimization algorithms by running them locally on their own 

quantum computers. 

 Edge (Mobile): Currently there are also “non-stationary” approaches being 

developed to allow for smaller quantum computing systems to be administered 

with reasonable effort (e.g., rack-based) or on edge avoiding complex 

environmental shielding. 

1.7 OS / Software 

Several software frameworks e. g., QISKIT, Q#, Bracket and others have been developed 

to provide a domain-specific language (DSL) for specifying and executing quantum 

algorithms at the level of universal gates independent from the underlying realization 

of the physical qubits. Typically, the same DSLs can also be used to simulate the 

quantum algorithm. Note, though, that this form of “programming” is on a similar 

level as assembly language. Firmware on control electronics (FPGAs etc.) is also 

required to “run” a quantum computer. Optical quantum computers, as a special case 

here, operate as an accelerator and do not run software directly. Custom software is 

used for tuning and configuration of the optical QC device. 

 

 

 

 
10 Example: Supervised learning with quantum enhanced feature spaces, Havlíček, V., Córcoles, A.D., 

Temme, K. et al.  

https://arxiv.org/abs/1804.11326
https://arxiv.org/abs/1804.11326
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1.8 Development Challenges 

 Hardware scaling: Even though typical quantum algorithms only need a small 

number of logical qubits; current QC technologies require a factor of thousand 

more physical qubits to form a single logical one due to: 

 Quantum Error Correction to create a few stable logical qubits out of a lot of 

(unstable) physical qubits. 

 Error mitigation to enable quantum advantage in the near term. 

 Lack of business-relevant quantum computing algorithms: The prime challenge is 

to identify quantum algorithms that solve real business problems more efficiently 

than classical ones. To a large extent this is due to the (typically omitted) fact that 

one cannot directly map a business question to a quantum algorithm. One first 

must associate the business question at hand with a specific mathematical problem 

or algorithm, or classes thereof. Only then is it possible to evaluate whether there 

exists a suitable quantum algorithm and how many qubits are minimally needed to 

run it. 

 Efficient integration and communication of quantum and classical computing is 

crucial, as most quantum algorithms only speed up specific steps in a larger 

classical algorithm. To fully realize the potential of quantum computing, the 

quantum and classical steps need to be efficiently combined. This requires 

developing new techniques for integrating quantum and classical computing, as 

well as optimizing the communication between the two types of systems.  

 Quantum computers cannot really »store« information: Due to the inevitable 

decoherence time and the “no cloning” theorem11, a quantum computer cannot 

store data for a duration longer than the computation process. Consequently, 

quantum algorithms must be designed in such a way that the data is processed, 

and the results obtained within the time frame allowed by the coherence time of 

the qubits. This imposes a fundamental limitation on the size and complexity of the 

problems that can be solved using quantum computers. 

 
  

 
11 The "no cloning" theorem in quantum mechanics states that it is impossible to make a perfect copy of an 
unknown quantum state. This means that it is not possible to simply copy the data in a quantum computer to a 
different location for storage, as is done in classical computers. 



Future Computing: Overview of Technological Landscape 

6 

2 Neuromorphic Computing 

Dr. Johannes Leugering (Fraunhofer IIS), Bert 

Klöppel (T-Systems), Ferdinand Pscheidl 

(Fraunhofer EMFT), Villads Pors Schjelde 

(Infineon Technologies AG), Dr. Mira Wolf-

Bauwens (IBM) 

2.1 Short Description 

Neuromorphic Computing is a multidisciplinary field that aims to build sensors, 

processors, and algorithms based on principles observed in neurobiology. Most 

neuromorphic systems are designed according to the special requirements of neural 

network models: Neural networks are composed of many individually simple neurons 

that all operate in parallel and communicate only via direct synaptic connections. 

Likewise, neuromorphic systems typically feature many simple processing elements 

that run concurrently and communicate via point-to-point connections instead of 

shared memory. These basic features, which mimic the morphology of biological 

neural systems, give the field its name and distinguish it from conventional general-

purpose computer architectures. 

Although building neuromorphic circuits originated in the intent of modelling 

biological processes in the human brain in detail to learn more about it, most current 

neuromorphic computing does not aim to do that. It rather tries to adopt some of the 

characteristics of the human brain to design algorithms and hardware, that brings 

power efficiency and latency of computing close to the human brain while solving 

typical machine learning tasks like image classification or voice detection with a 

human-level performance. The main aspects of the biological model that are leveraged 

are binary and asynchronous spike-based communication and continuous time 

computation, which are often implemented using analog, mixed-signal or 

asynchronous digital circuits.  

Technology Readiness Level 

While the neuromorphic computing field is still dominated by academic research, 

several start-ups and research division of larger companies have demonstrated 

prototypes and first products in recent years. In Germany, several research 

organizations, universities and spin-offs have also announced neuromorphic products, 

but so far only few products are commercially available of the shelf. 

Practical maturity should further discriminate between sensing (e.g., event-based 

sensors using neuromorphic principles), inference (e.g., classification of patterns) and 

training (extracting implicit knowledge by observation): Neuromorphic sensors, in 

particular event-based vision, were among the first applications of neuromorphic 

computing and are already commercially available off the shelf (maturity 10). 

Inference is also quite advanced, (maturity 6-7, with expected prototypes and first 

products within the next five years), but training solely done by neuromorphic chips is 

still in a quite early research stage (maturity 2-4). Therefore, hybrid scenarios 

(technical split between training and inference) are likely to be run first. Most early use 
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cases can be expected for relatively stable edge scenarios, perhaps in combination 

with neuromorphic sensors. 

2.2 Benefits 

 Higher energy efficiency (see below) 

 Execution speed 

 Robustness against noise, local failures, and device variability  

 Enhancing efficiency and enabling growth of network size for DNN applications. 

2.3 Energy Consumption Considerations 

From the energy efficiency perspective, neuromorphic computing is significantly better 

than classical, synchronous running implementations. Studies claim a factor between 

4 and 16 using the same semiconductor technology as classical processor chips12.  

Alternative semiconductor materials are also under investigation, aiming especially to 

improve memory density (in particular for non-volatile memories), integrate memory 

and computing more closely to reduce data transfers, or to improve efficiency at the 

expense of computing accuracy, which is possible for intrinsic fault tolerant 

approaches like neuromorphic computing13. 

Due to this improved computational energy efficiency, current neuromorphic use cases 

focus mostly on near edge intelligence with focus on computer vision and high 

dimensional signal processing. 

2.4 Limitations  

 For neuromorphic computing with spiking neural networks spike-rates are an 

inefficient way of representing numbers. This makes a direct conversion of deep 

neural networks inefficient. More efficient approaches are an active area of 

research but currently both software support and competitive network 

architectures are still missing. Therefore, neuromorphic chips are currently not 

competitive for many tasks that are done well by conventional computers14.  

 Neuromorphic computing is motivated by our current, incomplete understanding of 

the brain, which may not capture critical aspects of cognition such as the role of 

neurotransmitters and hormones, different neuron morphologies and cell types, 

and specific neural circuits. If cognition relies on these phenomena, current 

neuromorphic computing approaches might result in too incomplete 

approximations to be of practical use. 

2.5 Applications  

 Medicine: Neuromorphic computing is effective in receiving and responding to 

environmental data and can be made compatible with the human body using 

organic materials. This technology could be used to improve drug delivery systems 

 
12 Rao, A., Plank, P., Wild, A. et al. A Long Short-Term Memory for AI Applications in Spike-based Neuromorphic 
Hardware. Nat Mach Intell 4, 467–479 (2022).  
13 Emerging In-memory Computing for Neural Networks (fraunhofer.de) 
14 Are neuromorphic systems the future of high-performance computing? – Physics World 

https://doi.org/10.1038/s42256-022-00480-w
https://doi.org/10.1038/s42256-022-00480-w
https://www.ipms.fraunhofer.de/content/dam/ipms/common/documents/2022/Fraunhofer%20IPMS-Bosch-Emerging%20In-memory%20Computing-for%20Neural-Networks.pdf
https://physicsworld.com/a/are-neuromorphic-systems-the-future-of-high-performance-computing/
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by releasing a drug when it senses a change in body conditions such as insulin and 

glucose levels. It could also enhance prosthetics by providing a more realistic and 

fluid experience through its ability to receive and respond to external signals. 

 Computer vision 15: Neuromorphic computing can be applied to event-based vision 

sensors that generate images similarly to the human eye. These sensors respond to 

changes in light intensity extremely quickly. This fast response time does no longer 

lead motion blur or delayed response, making them ideal for uses in robot vision 

and virtual and augmented reality technology. 

 Autonomous robots and self-driving cars 16: Due to their low energy consumption 

and short reaction times needed to process vast quantities of data, neuromorphic 

chips are well-suited for on-board processing in self-driving cars, drones, or 

satellites, i.e., where decisions need to be made autonomously and cloud-

connectivity and power-budget are limited. In addition, neuromorphic chips offer 

potentially higher reliability in high noise environments. These benefits could make 

autonomous robots and driverless cars more economical, safer, and more suitable 

for varying environments. 

2.6 Physical Area of Use 

 Edge: Neuromorphic chips are particularly well-suited for use on the edge, as they 

can process data more efficiently and quickly with limited cloud-connectivity. Since 

edge applications also require less infrastructure and are thus cheaper to develop, a 

lot of neuromorphic computing research has focused on this sector so far. 

 Cloud solutions are used for tasks that require more computational power and data 

processing capabilities. Several organizations pursue this direction by building 

wafer-scale chips or cloud computing centers based on neuromorphic architectures. 

Ultimately, the decision of whether to use neuromorphic chips on the edge or in the 

cloud will depend on the specific needs and constraints of the application. 

2.7 OS / Software 

Four basic features of spiking neural network (SNN) software can be distinguished: 

Design, training, simulation, and compilation to hardware. The existing software tools 

discussed later often provide multiple of these features.  

Software to design SNNs needs to provide a specification format of describing a SNN 

architecture (e.g., PyNN) and should have an API to easily build up a SNN specification 

from reusable subnetworks (e.g., Nengo) and neuron models. A design tool could be 

extended by neural architecture search tools, which is a promising research direction 

to find more efficient SNN architectures that use less neurons but exploit spike timing 

and neuron dynamics in deep and recurrent networks.  

A SNN training tool should be able to apply a programmable or selectable training 

algorithm to a specified SNN architecture. Existing training tools often rely on 

pretrained DNNs and convert them to SNNs with or without post-conversion 

optimization (e.g., snntoolbox), which reduces development time but tends to yield 

suboptimal results. Some training algorithms try to improve on this by using the 

 
15 PureSentry contamination detection | Cambridge Consultants 
16 Edge-AI & Neuromorphic – Efficient Processing of Time Series Data for Control & Prediction 

https://www.cambridgeconsultants.com/case-studies/puresentry-contamination-detection
https://www.nanoge.org/proceedings/MatNeC22/61d9e942bd7ce704cc9a07be
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precise spike timing to encode information, or by constructing a surrogate model that 

can be optimized with the same gradient-based methods as DNNs (e.g., snnTorch or 

Norse).  

Due to the popularity of Deep Learning, a lot of the tools used for neuromorphic 

computing are derived from tools developed for DNNs (e.g. Pytorch), but these tools 

fail to leverage the full potential, since they don’t capture the specifics of 

neuromorphic hardware such as analog or event-based processing. Therefore, the field 

will need to develop its own paradigms and software frameworks alongside the 

hardware itself. 

When deploying neural networks on neuromorphic hardware, it is also necessary to 

implement a compiler that converts a given network and its parameters to 

programming instructions and byte-streams for the hardware. This can also include 

additional steps, such as a placer & mapper and router, which optimize the abstract 

model to the specific resources available in hardware. 

2.8 Development Challenges 

 Being able to distribute large amounts of memory among many processors on a 

single chip: Neuromorphic chips rely on the parallelization of a very large number of 

processes. For this to work efficiently, the required data needs to be placed in 

memory close to these processors, which requires new architectures and memory 

technologies. The availability of (cache) memory is already (one of) the main 

limiting factor(s) of conventional processor design and will be a major challenge for 

neuromorphic computing. 

 Developing competitive neural network architectures for neuromorphic devices: To 

be successful, neuromorphic computing will have to compete against neural 

networks deployed on conventional hardware such as GPUs, which have been 

thoroughly optimized for each other. This can only be achieved by finding new 

algorithms and neural network topologies that are similarly optimized for 

neuromorphic devices.  

 Developing scalable messaging and interconnect architectures: The parallelization 

of neuromorphic devices also requires a previously unseen amount of 

communication between these processors. Since communication can be highly 

irregular and sparse, completely new interconnect architectures and design tools 

are needed. 

 New algorithms, software and design tools must be developed to incorporate and 

leverage the specifics of neuromorphic circuits. Current hardware is developed to 

optimize performance for current neural network algorithms, which are in turn 

optimized to run well on current hardware. Breaking this cycle requires a large 

effort of hard- and software co-development. 

 Device variability and noise of analog circuits: For neuromorphic devices that rely 

on analog computation or new materials, the non-ideal effects and inherent device 

variability can be addressed on the application level, i.e., inside the neural network. 

This contrasts with conventional digital design, which aims to compensate for these 

effects already on the lowest circuit level. This means that design workflows must 

be changed, and new methods for verification must be developed. 
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3 Optical Computing 

Dr. Michael Kissner (Akhetonics) 

3.1 Short Description 

Optical Computing promises to remedy some of the problems that plague electronics 

such as power consumption and data bottlenecks. The idea dates back to the 1950’s, 

with von Neumann himself holding one of the first patents on an electromagnetic 

(”optical”) transistor17 and the famed Bell Laboratories having created one of the first 

optical computers in the late 1980’s18. But as with most technologies that aren’t 

mature enough to enter the market, optical computing has gone through several hype 

and winter cycles over the years, and we are currently entering a new hype cycle. 

There are two common approaches: The digital domain, which aims to replace the 

standard electronic processor and the analog domain, focusing on artificial intelligence 

(AI) acceleration. There is also an optical approach in QC which is out of focus of this 

section.  

Digital: 

By using all-optical transistors as building blocks, any computer architecture can be 

converted to an all-optical processor (be it von Neumann, Harvard, or other). This 

would make computing extremely energy efficient and a lot faster. Furthermore, by 

using multiple wavelengths, it is highly parallelizable without the need to add more 

transistors.  

Currently, there are sufficient all-optical transistor concepts for which the research 

phase is completed. These can be used for optical digital computing. With switching 

speeds approaching the Petahertz domain, they promise a speed-up compared to 

current electronic transistors found in modern CPUs.  

Currently, optical digital computing is the main approach to optical computing that 

promises to be all-optical without the need for electronics to manipulate data. 

Essentially, all-optical digital computing is at a similar point as electronic computing 

was in the 1970s, with similar large footprints and integration challenges. The TRL is 

currently around 4. 

Analog 

Optical analog computing is used to directly model mathematical functions in the 

optical domain. Using linear optical devices (such as Mach-Zehnder-Interferometers), it 

is possible to do vector-matrix multiplications (VMM) which can be implemented in AI 

systems. With more complex setups, Fourier transforms are also possible using linear 

devices. So far, non-linear mathematical operations have not been explored in detail. 

The working principle exploits the wave properties of light: By constructively 

interfering two light beams one can »add« them and by attenuating (or dimming) one 

can »multiply« the first result by a constant. Using these two linear operations in 

 
17 US2815488A - Non-linear capacitance or inductance switching, amplifying, and memory organs - Google 
Patents 
18 A. Huang. “Architectural considerations involved in the design of an optical digital computer”. Proceedings of 
the IEEE, 72(7):780786, 1984 

https://patents.google.com/patent/US2815488A/en
https://patents.google.com/patent/US2815488A/en
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sequence allows for the famed vector-matrix multiplication. The TRL is currently 

around 7, with the first companies releasing their products. 

The inability to perform operations other than linear vector-matrix multiplications has 

led to significant limitations in the use of analogue processors for AI acceleration. 

Existing approaches rely on continuous conversion between the electrical and optical 

domains, which compromises efficiency (see further “Limitations”). There are 

companies working on performing some of the non-linear computations optically. 

However, there is currently no roadmap to all-optical analogue computing, and all 

approaches require some conversion to the electronic domain at some point during 

the computation. 

3.2 Benefits: 

 Extremely parallelizable: Photons do not interact strongly with other photons or 

even some materials. This allows a high degree of parallelization, since it is possible 

to have multiple light beams with different wavelengths doing parallel 

computation without crosstalk.  

 Ultra-low power consumption and low latency: Using almost perfectly transparent 

materials allows for extremely efficient waveguides that act almost like a 

superconductor. 

 130/250 nanometer (nm) fabrication nodes: No leading-edge manufacturing 

processes are required. 

3.3 Energy Consumption Considerations 

Based on technology prototypes aiming on the key optical benefits – massive 

parallelism and ultra-high speed – used for AI-relevant tasks, considerable increase in 

energy efficiency could be expected. Some basic research calculated and empirically 

verified improvements ranging from 1 to 3 orders of magnitude (factor 10 up to 1000).  

Lower primary energy consumption per operation and drastically reduced 

computation time are main reasons for this improvement. Due to the very early state 

of maturity, especially the very high figures must be handled carefully. Finally, optical 

computing, like quantum computing, needs significant effort and therefore energy for 

classical computing power for data preparation and ingest plus later extraction and 

interpretation.19  

3.4 Limitations 

 Digital 

Low light-light interaction: To create an all-optical transistor, two light beams must 

interact with each other. This can only be done using highly specialized materials, 

long interaction lengths or very intense light beams. 

 Analog  

Electronic processing bottleneck: Not many operations that can be performed using 

a completely linear PIC. This has severely limited the use of these analog processors 

to AI acceleration, since all modern neural networks also require a non-linear 

 
19 Photonic tensor cores for machine learning | Applied Physics Reviews | AIP Publishing 

https://pubs.aip.org/aip/apr/article/7/3/031404/998338/Photonic-tensor-cores-for-machine-learning
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activation function. So far, the approach has been to repeatedly convert between 

the optical domain (to do the linear operation) and the electronic domain (to do all 

the non-linear operations). Converting between optical and electronic domains 

repeatedly leads to power and speed losses.  

3.5 Applications  

 Digital 

General Purpose: Use-cases include anything that a regular CPU, GPU or ASIC can 

currently do.  

 Analog  

Application Specific: Linear Mathematical Operations and Fourier Transforms are 

the current main use-cases. 

 Deep learning: VMM is the main computation component in deep learning, so AI 

accelerators mostly use the analog approach. 

 Data encryption: Fourier Transforms have proven to be quite useful in the field of 

fully homomorphic encryption (FHE), enabling secure data processing, which has 

thus far been held back by the speed of computation. 

3.6 Physical Area of Use 

 Digital: cloud and on-premises 

 Analog: cloud and edge 

3.7 OS / Software 

Digital: Same as in electronics, OS / Software can be optimized for Optical Digital 

Computing. While it is expected that a different architecture is used and a new type of 

instruction set, the overall programming principle will be abstracted away from the 

developer (through libraries and compilers). 

 

Analog: Operates as an accelerator and does not run Software directly. Custom 

Software used for tuning and setting the device. 

3.8 Development Challenges 

 Very large footprint of the IC due to low transistor densities, leading to larger 

processors at the moment.  

 Digital 

 Need for alternative architecture approaches: von Neumann architecture as 

found in electronic digital computers is not well suited for the optical domain as 

one of the major benefits is the high data bandwidth achievable using light. 

Alternatives are being explored which have dropped out of favor in electronics, 

but are still interesting in the optical domain, such as the Harvard architecture, 

the pushdown automata or the finite-state machine. 
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 Chip integration of non-linear photonics and the associated material 

development onto a photonic integrated circuit (PIC) to allow for scaling of the 

circuits. 

 Optical memory is still not as abundantly available as in electronics.  

 Analog 

 Scaling without sacrificing latency and power and reducing the input/output 

bottleneck introduced by electronics. 
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4 Digital Annealing 

Dr. Stefan Walter (Fujitsu) 

 

4.1 Short Description 

Digital Annealing systems are quantum-inspired special purpose hardware devices, 

designed to solve large combinatorial optimization problems very fast. The problems 

need to be formulated as an Ising model or equivalently as a Quadratic Unconstrained 

Binary Optimization (QUBO). Digital Annealing systems search for the lowest energy 

value of the energy function. In many cases the basis of the search algorithm is a 

Simulating Annealing approach which is enhanced using hardware techniques such as 

GPUs, FPGAs or ASICs, and/or quantum-inspired algorithms. The hardware approaches 

specifically tailored to solve Ising type problems make Digital Annealing systems a 

powerful and competitive computing technology.  

Technology Readiness Level 

Digital Annealing is a mature technology, proven by actual systems in operational 

environments. Therefore TRL 9 can be assigned.  

4.2 Benefits 

The key advantages of Digital Annealing compared to quantum computing approaches 

are: 

 Full connectivity among bits allows for solving more complex and more realistic 

problem scenarios without an additional overhead of embedding the problem, i.e., 

all bits can be used to encode the problem. 

 High gradation allows for high precision (high inter-bit coupling resolution) in the 

formulation of the combinatorial optimization problem. 

 Large problem sizes solvable: Existing annealers can handle between 100 000 bits 

up to 10 million bits using a combination of hardware and software technologies.  

 No special environment needed: Digital Annealer can be implemented in standard 

19-inch rack enclosures used in data centers. Compared to most quantum 

computing approaches, no cryogenic or vacuum environment is needed. 

4.3 Energy Consumption Considerations 

A benefit of special purpose hardware is their relatively low energy consumption. 

Depending on the realization, their power consumption is comparable to the CPUs and 

GPUs. As in the case of traditional hardware, there is of course power needed for the 

environment, e.g., server power, data center cooling, etc. 
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4.4 Limitations  

 Special purpose: Digital Annealing systems are restricted to solving combinatorial 

optimization problems only. 

 Only close to optimal solution: Digital Annealing systems are based on simulated 

annealing. There is no guarantee for the global optimum of the optimization 

problem. However, often a close to optimal solution, obtained in a very short time, 

is sufficient. QUBO problems are formulated with binary variables. To represent 

integer and continuous variables slack bits are needed which then are no longer 

available for the problem description. 

4.5 Applications  

Digital Annealing  systems, as their quantum counterpart Quantum Annealer, are 

capable of solving combinatorial optimization problems, i.e., searching for a minimum 

energy solution of a given energy function. The problems need to be formulated as an 

Ising model or equivalently as a Quadratic Unconstrained Binary Optimization (QUBO). 

Combinatorial optimization problems are very complex optimization problems (in 

many cases instances of NP-complete problems) often with a huge number of 

variables and as a consequence the search space is usually too large to search 

exhaustively by brute force methods. Prominent problem examples include the 

travelling salesman problem, graph partitioning, graph coloring, and Boolean 

satisfiability problems. Although being restricted combinatorial optimization 

problems, those kinds of problems represent a significant number of challenges in 

many industries, e.g.: 

 Mobility: e. g. traffic flow optimization20, scheduling 

 Life science: e. g. drug design 

 Finance: e. g. portfolio optimization, arbitrage optimization 

 Manufacturing: e. g. production planning 21, transport planning, assignment 

problems, warehouse optimization 

4.6 Physical Area of Use 

 Cloud: with APIs providing suitable interfaces for access from the public internet.  

 On-premises: in case of special requirements to the solution (such as security issues 

or latency and real time demands). On-premises operation requires no dedicated 

environment since most Annealing systems can easily be integrated in existing 

standard data center infrastructure. 

4.7 OS / Software 

All Digital Annealing systems have in common that they solve combinatorial 

optimization problems formulated as an Ising or QUBO model. In these types of 

problems, the whole optimization problem and its business logic is described by a 

 
20 MOZART: Traffic management through traffic signal control by Quantum-Inspired (fujitsu.com) 
21 Fujitsu, Toyota Systems leverage Fujitsu’s Quantum-Inspired Digital Annealer to streamline automobile 
production sequence : Fujitsu Global 

https://sp.ts.fujitsu.com/dmsp/Publications/public/ITS-Hamburg-2021-id%20511%20Final-Paper.pdf
https://www.fujitsu.com/global/about/resources/news/press-releases/2022/1021-01.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2022/1021-01.html
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matrix containing the coupling between bits. Compared to other computing 

approaches and especially to quantum gate computing, there is no need to develop 

novel algorithms which are then used to solve certain types of problems. It is just the 

matrix which in most cases needs to be handed over, using an API, to the Digital 

Annealing device. The underlying algorithm (digital annealing, simulated annealing, or 

simulated bifurcation) then solves the optimization problem. 

There are some SDKs to conveniently create Ising and QUBO polynomials or matrixes, 

such as Fujitsu's DADK or D-Wave's Ocean. Some quantum SDKs such as Qiskit are also 

able to handle QUBOs. However, any custom method to populate a matrix with 

weights reflecting the business problem is sufficient. Each Digital Annealing system 

comes with specific parameters (such as e.g., maximum allowed solver time, etc.) that 

can be adjusted using the API. 

4.8 Development Challenges 

 Not every combinatorial optimization problem is suited: Every linear 

(mixed/integer) optimization problem can be cast into QUBO form and can then be 

solved using a Digital Annealing system. In many cases, such an approach won’t 

provide the potential speed up or an increased solution quality. Therefore, it is of 

great importance to identify business problems benefitting from using a Digital 

Annealing system or allowing to think beyond the border line of limitations caused 

by linear solvers. In addition, it is essential to develop and efficiently formulate the 

QUBO such that the business logic is correct. 

 Additional resources (i. e. bits) required for problems using higher order 

polynomials to be cast into QUBO form: Often business problems require the use of 

higher order polynomials in their formulation. To use Digital Annealing systems for 

such kind of problems, higher order polynomials need to be cast into QUBO form 

which requires additional resources (i.e., bits). As it is the case with Quantum 

Annealing, identifying the right problem to be solved is a crucial task and in any 

case, it needs to be tested whether the novel Digital Annealing approach leads to a 

lower time to solution or provides a better solution. 
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5 DNA Computing 

 Dr. Christoph F. Strnadl (Software AG) 

5.1 Short Description  

DNA computing is a subset of molecular or chemical computing involving DNA, RNA, or 

highly related molecules. DNA computing (in the wider sense 22) means computing by 

using a) the structure of synthetic oligonucleotids (shorter strands of DNA or RNA23) to 

store information (DNA storage) and the related chemical machinery (e.g., enzymes, 

ribozymes, ribosomes, DNAzymes, and others) and mechanisms (e.g., hybridization or 

annealing24, exonuclease digestion, PCR) to deliberately manipulate this information 

(DNA computing in the narrower sense). 

There are several different computational models how to realize DNA computing such 

as 

 DNA strand displacement (DSD) yielding amplifiers, Boolean logic gates, chemical 

reaction, networks, oscillators, molecular diagnostics, and neural networks: A single 

strand DNA molecule replaces an (existing) strand on a double-stranded DNA 

molecule and is later also moved. 

 DNA-based switching circuits based on DNA logic gates up to more sophisticated 

DNA neural networks. 

 Sticker model implementing a register machine. Here, one lets smaller strands of 

single-stranded DNA hybridize (“stick”) to a larger (single strand) “memory strand” 

to encode numbers. Advantage here is that this works without any enzymes or PCR 

simply based on annealing, i.e., letting two single-strand DNA pieces connect to the 

complementary piece. 

 Surface-based DNA computing / DNA computing on a scaffold: Here, DNA 

molecules are fixated (“sticked”) onto an underlying substrate medium – as 

opposed to floating around in a suitable solution. 

 Combinatorial DNA approaches where (very roughly speaking) potential solutions 

are encoded in DNA and then subject to an appropriate filtering process discarding 

all non-optimal (or non-fitting) solutions.25 

 DNA "origami": Automatic nanoscale DNA assembly and folding resulting in non-

arbitrary two- or three-dimensional shapes (“tiles”). 

 DNA "chips", i.e., microarrays of DNA. 

 DNA “navigators” and “DNA walkers”: A single DNA molecule “travels” all possible 

paths on a surface prepared (e.g., by DNA origami) for the problem to be solved. 

Both, autonomous and stepped (i.e., externally triggered) locomotion are 

achievable.  

 
22 When referring to “DNA computing” in general, it is meant to always include RNA computing and other 
variants as well. If we want to distinguish between RNA computing and DNA computing, this will always be 
specifically indicated in the text. 
23 Typical lengths reach from 20 to some hundreds of nucleotides.  
24 This is the reaction where to complementary strands of single-strand DNA reconnect or recombine into a 
double-strand DNA molecule. This is called “hybridization” for historic reasons and “annealing” because it 
happens if you cool down a hot, (so-called denaturalized) “soup” of DNA single-strand molecules. 
25 Adelman (1994) used this technique to solve the travelling salesperson problem. 
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 Cellular DNA computing, that is DNA computing directly in a (living) cell. This form 

of DNA computing has some promising applications in nanomedicine. 

 "Computing without computing", i.e., computing through stopping naturally 

automatically executing chemical processes to do something meaningful (e.g., 

ligation prevention). 

Technology Readiness Level 

Depending on the implementation of DNA computing, TRL may be assessed at 3 

(experimental proof of concept) or 4 (technology validated in lab). DNA computing, as 

of today, has not been validated in any relevant application environment outside 

research – possibly except for some startups who are currently trying to establish TRL 5 

(technology validated in relevant environment; industrially relevant environment in 

the case of key enabling technologies). For DNA storage, current write speeds are 

approximately 500 byte/s. 

5.2 Benefits 

DNA computing  

 Parallelization: Using sufficiently many DNA strands, a large class of NP-complete 

combinatorial problems (Hamilton path, Boolean satisfaction) can be solved very 

fast (e.g., by first encoding every potential combination and then selecting only the 

required subset). Scalability goes to 1018 DNA strands in 1 liter of water. 

 Biological error-correction mechanisms available (in theory) for correcting copying 

and processing areas, limited to the natural pathways of ribonucleic acids in living 

cells. 

 extraordinary energy efficiency at the level of 1 J/1019 operations (= 1 J/10 Eops = 1 

J/10,000 Pops2627). This is about one billion (= 1,000 million = 109) times more energy 

efficient than current day electronic devices.28 

DNA storage 

 Besides its incredible storage density (seven orders of magnitude (107) more than 

tape storage and three orders more than flash memory), DNA storage excels with a 

(evolutionary) proven track record as information bearer at longevity, durability (up 

to 1 million years), and energy efficiency (eight orders of magnitude (108) better 

than that of flash memory). 

5.3 Limitations  

DNA computing  

 Low signal propagation speed: DNA reactions are slow and even simple operations 

typically complete in hours (instead of milliseconds). Only the huge parallelization 

will yield acceptable speed up (1018 processors / 104 seconds (= several hours) for 1 

 
26 Exa (E) = 1018, Peta (P) = 1015 
27

 ops = operations per second 
28 The chemical reaction of hybridization (or annealing), i.e., letting two strands of single-strand DNA molecules, 
releases energy. 
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operation = 1014 ops = 0.1 Pops (Peta-ops). The current fastest supercomputers have 

1,000 PFlops29. 

 Weak scaling: The amount of DNA required scales exponentially with the size of 

(most) problems even though the number of steps of the underlying chemical 

reaction network only increases polynomial. 

 Optimal for discrete problems but not continuous ones. By construction, DNA/RNA 

computing is optimal for discrete problems even though many real-world problems 

involve continuous search spaces. 

DNA storage 

 Access latency: Currently at minutes or hours. Undoubtedly, this will be shortened, 

but there are intrinsic physico-chemical limits to what one can achieve30. Current 

implementations achieve up to 500 byte/s throughput (for some MB of data). 

Prototypes are expected to run at a factor of 10,000 in mid-2023. 

5.4 Application Areas 

 Combinatorial problems: travelling salesperson problem (= Hamiltonian path 

problem); SAT (satisfiability problem) of Boolean formulas, graph coloring 

 Content-based similarity search as opposed to exact search and information 

retrieval (e.g., based on a unique key). Here, similar features of records are mapped 

to DNA sequences which are more likely to hybridize.  

 Random-number generation (RNG) provided by automated DNA synthesis, enabling 

a true random number output of approx. 0.3 MB/s based on an independent source 

of entropy that is air-gapped and orthogonal to other RNG sources. This entropy can 

be used directly or as a secure seed into a pseudo-RNG 

 Cryptography including unbreakable encryption schemes, steganography (hiding 

information in some other medium) 

 Intrusion/attack detection 

 Scheduling 

 Clustering 

 Bio-sensing and intelligent diagnostics of molecular-level conditions (e.g., sickness, 

presence of pathogens or other biomarkers) of the human system 

 Nanomedicine, e.g., providing in vivo (foremost) RNA computing systems 

implementing some Boolean logic for controlling cell-level or molecular pathways 

 DNA barcoding and product tagging 

 Switchable “smart” materials controlled by logically processed signals 

 “DNA of Things” (DoT): Based on 3D-printing of objects with memory, by encoding 

the desired information in DNA, encapsulating the DNA in silica particles and fusing 

the DNA-containing particles into various materials usable in 3D-printing, e.g., for 

providing a unique identity to the thing. Another example cold be bioelectronic 

 
29 Flops = floating point operations per second 
30 The limited speed of DNA computing's operations is fundamentally limited by physico-chemical laws of 
nature (e.g., mass action law) and cannot be overcome even theoretically as long as DNA computing (and 
storage) is confined to DNA, RNA, or other complex molecules. 
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devices such as biofuel cells controlled by external signals, or signal-controlled 

release processes for certain chemicals. 

 Long-term highly energy efficient and fully biodegradable information storage & 

archiving 

5.5 Physical Area of Use 

 Cloud: Due to the (current) complexity of operating DNA computers including DNA 

storage31, this will most likely result in a cloud computing (SaaS) model. 

5.6 OS / Software 

By its very design, DNA computing does not run on any common digital substrate 

where the terms “operating system” or “software” can be used in the ordinary sense. 

Nevertheless, research has been active to provide higher level abstractions in the form 

of programming languages or simulators on top of the individual molecular or 

chemical reaction pathways to facilitate controlling (“programming”) the essentially 

chemical test tubes or micro-reactors32. 

 gro (from “growth”) is an open-source software package that combines a 

distributed systems and parallel computing approach with the simulation of up to a 

few thousand bacterial cells growing in a 2D environment33. It is based on the 

behavior of Escherichia coli (bacteria) like microcolonies and tracks up to 10 

generations before the computation is saturated. 

 Cello is an open-source framework can be used to design computational DNA 

circuits that encodes the electronic logic circuits. The resulting complete DNA 

sequence can be executed as a circuit inside living cells, such as bacteria or viruses. 

Primarily, their database uses NOR and NOT gates to represent any logic function. It 

is based on Verilog.34  

 Visual DSD is a domain-specific programming language (DSL) based on the DNA 

strand displacement (DSD) mechanism. It uses a web-based graphical interface to 

realize the computational circuit, in order to construct the reaction network by 

using the provided DNA species, while this approach benefits in analyzing the 

reaction network circuit without manual construction. It originated from the 

Microsoft and Duke University partnership on DNA computing. 35 

 Visual GEC is a programming language and software tool for designing genetic 

circuits.36  

5.7 Development Challenges 

 Large-scale parallelization: Due to the intrinsically low signal propagation speed of 

chemical reactions DNA computing must be parallelized to an unprecedented 

extent to yield acceptable computational throughput technical realization., 

 
31 Today, this means running a state-of-the-art genetic laboratory. 
32 Sawlekar, Rucha, and George Nikolakopoulos. "A Survey of DNA-based Computing Devices and their 
Applications." 2021 European Control Conference (ECC). IEEE, 2021. 
33 Specification and Simulation of Synthetic Multicelled Behaviors Seunghee S. Jang, Kevin T. Oishi, Robert G. 
Egbert, and Eric Klavins ACS Synthetic Biology 2012 1 (8), 365-374m 
34 Cello | CIDAR Lab 
35 Programming DNA Circuits - Microsoft Research 
36 Genetic Engineering of Living Cells - Microsoft Research 

https://www.cidarlab.org/cello
https://www.microsoft.com/en-us/research/project/programming-dna-circuits/
https://www.microsoft.com/en-us/research/project/genetic-engineering-of-living-cells/
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 Automation of DNA manipulations. Chemical reactions governing DNA computing 

are currently often performed manually by lab technicians using an array of semi-

automated lab equipment (e.g., pipette dispensers, etc.). All of this will have to be 

fully automated (e.g., by suitable robots) before larger scale commercial DNA 

computing may be accomplished. 

 Lowering the costs: The current cost base for manipulating DNA strands in a lab 

needs to be reduced by a factor of 1 million (e. g. through automatization or better 

error-correction) to make it feasible. 

 Mapping of business problems: DNA encoding of problem data is often unique to 

one problem and cannot easily be transferred to different problems (the so-called 

"DNA word design" problem). To limit copying errors, DNA sequences should be 

unique with a good 3D-structure (hairpin or linear), which further reduces encoding 

flexibility. It is also more difficult to encode continuous problems or problems with 

more than a single solution, although there are some promising results seemingly 

overcoming these problems (in theory). 

 Compounding of experimental errors: manipulating DNA strands (as of to-date) is 

an error-prone process (scales with the number of steps) and needs active error 

correction at every step. This is typically done by replicating DNA storage or the 

computations as the biological error-correction mechanisms typically are not 

available 1:1 for computations. 

 Limited computational complexity: The realm of computations accessible to DNA 

computing seems to be limited and much narrower than even classical computing. 

For instance, the encoding of data types (e.g., a stack) is difficult; modularity of a 

DNA computing algorithm is also difficult to achieve. Furthermore, for error-free 

operations, DNA designs should feature specific distribution of the underlying 

bases37 reducing design flexibility. 

 Discrete problems with a single optimum favored: By construction, DNA computing 

runs on a discrete substrate even though many real-world problems exhibit 

continuous search spaces. Additionally, problems often lack a single optimal 

solution but feature multiple solutions. This needs to be sufficiently recognized and 

suitably reflected in the algorithms applied to solve this type of problems. 

 Costs: Currently, the costs of DNA computing render it uneconomical. Costs 

(roughly) need to go down by 6 orders of magnitude (= 106 = 1 million) to render it 

feasible. 

  

 
37 The percentage of some of the four bases (typically G and C out of the four bases A, C, G, and T) needs to be 
sufficiently high to lead to stable 3-dimensional structures (hairpin or linear formation) of the DNA strands. 
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6 Further computing  

approaches 

Dr. Roman Bansen (Agentur für Innovation in 

der Cybersicherheit), Dr. Christoph F. Strnadl 

(Software AG) 

 Smartdust 

Smartdust usually refers to a system of many tiny microelectromechanical devices 

such as sensors or robots. They are operated wirelessly on a computer network and 

are distributed over an area to perform tasks, usually sensing, and communicate via 

radiofrequency38 . There are, however, theoretical concepts for these tiny devices 

to contain a simple processor. Intelligent control could use mesh networking of 

these devices in different ways from those of traditional computer networks. 

 Brain-Computer interface 

Brain-machine interfaces or brain-computer interfaces refer to the direct 

communication between the brain's electrical activity and an external computer. 

While usually used for augmenting or repairing human cognitive or sensory-motor 

functions and technically not a computing approach, it might radically change our 

way to operate and interact with computers in the future.39 40 41 

 Spintronics 

The term spintronics, or spin transport electronics, generally describes any kind of 

application or solid-state device which does not only use the fundamental electric 

charge of electrons but also their intrinsic spin. This adds a further degree of 

freedom to be utilized. Technically, this includes a whole range of already 

commercialized devices like the read heads of magnetic hard drives or magneto- 

resistive RAM and even certain approaches in quantum computing the focus with 

respect to future computing lies on the development of spin-based transistors, 

which could have several potential advantages over classical transistors.  

 Bio-neuronal networks 

In contrast to the artificial neural networks in neuromorphic computing, this 

approach uses biologically real nerve cells (neurons) as an interface to silicon-based 

electronics. Currently, the Australian startup Cortical Labs is looking to 

commercialize this »dishbrain« technology. Similar approaches are being pursued 

by researchers at the University of Texas in Austin42. 

 Approximate computing 

The umbrella term »approximate computing« includes several different 

 
38 Iyer, V., Gaensbauer, H., Daniel, T.L. et al. Wind dispersal of battery-free wireless devices. Nature 603, 427–433 
(2022).  
39 Science & Tech Spotlight: Brain-Computer Interfaces | U.S. GAO 
40 3 Brain-Computer Interface Technology Trends (patsnap.com) 
41 Frontiers | Progress in Brain Computer Interface: Challenges and Opportunities (frontiersin.org) 
42 Kireev, D., Liu, S., Jin, H. et al. Metaplastic and energy-efficient biocompatible graphene artificial synaptic 
transistors for enhanced accuracy neuromorphic computing. Nat Commun 13, 4386 (2022).  

https://doi.org/10.1038/s41586-021-04363-9
https://doi.org/10.1038/s41586-021-04363-9
https://www.gao.gov/products/gao-22-106118
https://www.patsnap.com/3-brain-computer-interface-technology-trends
https://www.frontiersin.org/articles/10.3389/fnsys.2021.578875/full
https://doi.org/10.1038/s41467-022-32078-6
https://doi.org/10.1038/s41467-022-32078-6
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computation techniques that – in contrast to a classical computer – return possibly 

inaccurate results. They could be used for any kind of application where an 

approximate result is sufficient for its purpose. In many non-critical scenarios, 

approximation within certain boundaries could provide significant gains in 

performance and energy, while still achieving acceptable result accuracy. 

Approaches and strategies for approximate computing include, amongst others, the 

use of approximate arithmetic circuits, approximate storage and memory or 

software-level approximation43, 44. 

 Associative machine 

An associative machine is a freely programmable machine composed of associative 

memories. In contrast to a classical Von Neumann processor, an associative 

machine is not built around an arithmetic logic unit but consists of associative 

units. Usually, associative matrices are used as associative memories. This way, the 

associative machine acquires properties of fault tolerance, which makes it 

particularly interesting for pattern recognition, completion and extraction. 

Associative machines require completely different programming paradigms, called 

associative programming, where a program line is associated with its successor and 

data can be queried in a fault-tolerant manner45, 46. 

 In-memory computing (IMC) / In-memory processing (IMP) / Processing in memory 

(PIM) 

In today's widespread Von Neumann computing architecture, the memory interface 

is a major hurdle for overall processing speed, slowing down many calculations. The 

IMC architecture eliminates the detour via the processor's main memory: 

Processing and storage of data takes place on the same chip. As stored data is 

accessed much more quickly when it is placed in RAM or flash memory, in-memory 

processing allows data to be analyzed much faster. Moreover, complex algorithms 

can potentially be processed with significantly lower power consumption. In-

memory computing is sometimes also classified as a neuromorphic computing 

approach. The way it functions, and the combination of fast computing power and 

low energy consumption make IMC particularly interesting for AI applications47. 

 Field Programmable Gate Array (FPGA) 

An FPGA is an integrated circuit consisting of (i) input/output blocks and (ii) user-

configurable logic blocks, which are linked together via (iii) programmable 

interconnections. Therefore, engineers can configure FPGAs according to desired 

requirements after they have been manufactured and deployed (hence, field 

programmable, contrary to ASICs – application specific ICs).48 Despite their size, cost 

and power disadvantages compared to ASICs, they are used for hardware 

acceleration (e. g. encryption, video format conversions, AI/ML algorithms) or to 

enhance security in heterogeneous and/or changing environments where the 

deployment of classical ICs (CPUs, GPUs) or ASICs no longer is cost-effective. 

 
43 W. Liu, F. Lombardi and M. Schulte, "Approximate Computing: From Circuits to Applications [Scanning the 
Issue]," in Proceedings of the IEEE, vol. 108, no. 12, pp. 2103-2107, Dec. 2020 
44 Approximate Computing | SpringerLink 
45 assoziativmaschine.de 
46 Assoziativcomputer: Hildesheimer Grüße an die NSA - Digital - FAZ 
47 S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna and O. Mutlu, "Processing-in-memory: A workload-driven 
perspective," in IBM Journal of Research and Development, vol. 63, no. 6, pp. 3:1-3:19, 1 Nov.-Dec. 2019  
48 Michael Mattioli. 2022. FPGAs in Client Compute Hardware: Despite certain challenges, FPGAs provide 
security and performance benefits over ASICs. 

https://ieeexplore.ieee.org/document/9264836
https://ieeexplore.ieee.org/document/9264836
https://link.springer.com/book/10.1007/978-3-030-98347-5
http://www.assoziativmaschine.de/index2.html
https://www.faz.net/aktuell/technik-motor/digital/assoziativcomputer-hildesheimer-gruesse-an-die-nsa-12923081.html
https://ieeexplore.ieee.org/abstract/document/8792187
https://ieeexplore.ieee.org/abstract/document/8792187
https://doi.org/10.1145/3512327
https://doi.org/10.1145/3512327
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7 Further Reading 

 

Quantum Computing 

 WEF insight Report »State of Quantum Computing: Building a Quantum Economy«  

 Leitfaden »Quantentechnologien in Unternehmen«  

 Quantum Computing White Paper (Software AG) 

 Industry Quantum Computing Applications, QUTAC Application Group 

 

Neuromorphic Computing 

 The Femtojoule Promise of Analog AI - IEEE Spectrum 

 J. Leugering, »Neuromorphe Hardware – Hardware für neuronale Netze«, DESIGN & 

ELEKTRONIK, 7/2020 

 

Optical Computing 

 Pierre Ambs, »Optical Computing: A 60-Year Adventure«, Advances in Optical 

Technologies, vol. 2010, Article ID 372652, 15 pages, 2010.  

 Miller, D. Are optical transistors the logical next step?. Nature Photon 4, 3–5 (2010) 

 

Digital Annealing  

 Mohseni, N., McMahon, P.L. & Byrnes, T. Ising machines as hardware solvers of 

combinatorial optimization problems. Nat Rev Phys 4, 363–379 (2022).  

 Kochenberger, G., Hao, JK., Glover, F. et al. The unconstrained binary quadratic 

programming problem: a survey. J Comb Optim 28, 58–81 (2014).  

 

DNA Computing 

 Katz E (2020): DNA Computing: Origination, Motivation, and Goals – Illustrated 

Introduction 

 Meiser, Linda C., et al. »Synthetic DNA applications in information technology.« 

Nature Communications 13.1 (2022): 1-13.  

https://www3.weforum.org/docs/WEF_State_of_Quantum_Computing_2022.pdf
https://www.bitkom.org/Bitkom/Publikationen/Quantentechnologien-in-Unternehmen
https://www.softwareag.com/content/dam/softwareag/global/marketing-material/en/whitepaper/corporate/wp-quantum-computing-en.pdf.sagdownload.inline.pdf
https://www.qutac.de/wp-content/uploads/2021/06/QUTAC_Paper.pdf
https://spectrum.ieee.org/analog-ai
https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ks/bb/Design&Elektronik_07-2020_Neuromorphe-Hardware.pdf
https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ks/bb/Design&Elektronik_07-2020_Neuromorphe-Hardware.pdf
https://doi.org/10.1155/2010/372652
https://doi.org/10.1155/2010/372652
https://ee.stanford.edu/~dabm/379.pdf
https://doi.org/10.1038/s42254-022-00440-8
https://doi.org/10.1038/s42254-022-00440-8
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/s10878-014-9734-0
https://www.nature.com/articles/s41467-021-27846-9%20(
https://www.nature.com/articles/s41467-021-27846-9%20(
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