
  

 

  

 

Future Computing  
 

Overview of Technological Landscape 



Future Computing: Overview of Technological Landscape 

2 

Inhalt 
 

 

Introduction 3 

How to read this document 4 

List of used abbreviations 5 

Technology readiness levels 6 

1 Quantum Computing 1 

2 Neuromorphic Computing 3 

3 Optical Computing 5 

4 Digital Annealing 8 

5 DNA Computing 10 

6 Further computing approaches 12 

7 Further Reading 14 

 

 
  



Future Computing: Overview of Technological Landscape 

3 

Introduction 

 

Nowadays progress in society, science, and technology is closely linked to the advances 

in IT and computing technologies. From healthcare to finance, transportation to 

manufacturing, agriculture to chemical industry: computing technologies affect 

almost every aspect of the modern economy. With the increasing complexity of 

problems, we seek to solve, as well as environmental impact of these technologies, 

there is a growing need for accessible, scalable, and more powerful computing that is 

also energy efficient. 

 

For over 60 years, progress in computing power was driven by Moore's Law, which 

states that the number of transistors on a microprocessor chip doubles every two 

years. Today, though, we are approaching the physically defined limitations of this law 

and it is becoming increasingly difficult to double computing power every two years. 

As a result, experts are discussing various computational concepts, architectures and 

platforms that could – in the mid and long term – further expand the boundaries of 

modern computing. 

 

In this paper we provide an overview of some of the most prominent technological 

approaches that promise to expand the current computing landscape by offering 

advantages in terms of computing power scaling, energy efficiency and applicability to 

a new range of problems. This includes new computing concepts such as quantum or 

neuromorphic computing as well as new computing platforms such as optical or 

chemical computing. 

 

It is important to note that all future computing concepts utilize at least one new 

approach on these levels of abstraction: 

 New basic concepts of computation e. g. based on quantum effects, based on 

principles of information processing inspired in the brain, based on non-

deterministic emergent effects or on the dynamics of chemical reactions. Each of 

these directions also requires new computer hardware architectures.  

 New platforms or information carriers: Some of these approaches require entirely 

new classes of devices e. g. molecule sensors in chemical computing, but most 

approaches can improve existing devices in a novel way (e. g. analog CMOS for 

neuromorphic computing or photonics for optical and quantum computing). 

 

Although each approach has its unique strengths and challenges, it is anticipated that 

the potential benefits will result from combining various technologies in an efficient 

manner. This paper will explore technological approaches across different levels of 

abstraction. However, providing a comprehensive description of every conceivable 

computing approach is beyond the scope of this paper. 

 

 

 

 

Our goal is to offer 

guidance to anyone 

who seeks to gain a 

better understanding 

of the currently 

emerging computing 

landscape and to help 

evaluate these 

approaches based on 

potential benefits for 

businesses in the 

future. 
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How to read this document 

 

In this paper, we categorize each future computing approach according to the 

framework presented below.  

 

 Short description: An overview of the respective computing approach and 

functionality, including an estimation of the current technology readiness level 

(TRL).  

 Benefits: Potential benefits of the technology as compared to classical digital 

computing available today. 

 Limitations: Inherent theoretical or physical limitations of the approach, e. g. in 

terms of problems classes the technology can address. 

 Applications and Use-Cases: Applications denote potential usage domains. A Use-

Case is ademonstrated proof-of-concept or an implemented solution (when 

available). 

 Physical Area of Use: We differentiate between three main deployment and 

consumption options of the technology: cloud-based, on-premises, or edge 

computing. 

 Development Challenges: Existing technological challenges which needs to be 

overcome for a practical and industrial use of the technology 

 

At the end of the paper, we provide a curated list of resources for further reading on 

each specific approach. 

 

As this paper represents a condensed executive version of our more elaborate «Future 

Computing» report, the reader is referred to the full-length version for a more in-depth 

analysis, including a comprehensive list of attributes and more detailed descriptions. 
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List of used abbreviations 

 

 

 ASIC - Application-specific integrated circuit 

 AI - Artificial Intelligence 

 CMOS – Complementary metal-oxide-semiconductor 

 CPU – Central processing unit 

 DNA – Deoxyribonucleic acid 

 DNN – Deep neural network 

 EU – European Union 

 FPGA – Field-programmable gate array 

 GPU – Graphic processing unit 

 IC – Integrated Circuit 

 IMC – In-memory computing 

 IMP – In-memory processing  

 MB – Megabyte. 1 MB = 1,024 kilobytes (kB) = 1, 048,576 bytes 

 ML – Machine learning 

 nm – Nanometer. 1 nm = 10-9 m 

 PIC – Photonic integrated circuit 

 PIM – Processing in memory 

 QC – Quantum Computing 

 QUBO – Quadratic unconstrained binary optimization 

 RAM – Random Access Memory 

 RNA – Ribonucleic acid 

 RSA – Rivest–Shamir–Adleman, a public-key cryptosystem 

 TRL – Technology readiness level 

 VMM – vector matrix multiplication 
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Technology readiness  

levels  

 

 

The Technology Readiness Level (TRL) scale was introduced into the EU funded projects 

arena in 2014 as part of the Horizon 2020 framework program1. This document uses 

the same scale with the following definitions: 

 

 TRL 1 – basic principles observed 

 TRL 2 – technology concept formulated 

 TRL 3 – experimental proof of concept 

 TRL 4 – technology validated in lab 

 TRL 5 – technology validated in relevant environment (industrially relevant 

environment in the case of key enabling technologies) 

 TRL 6 – technology demonstrated in relevant environment (industrially relevant 

environment in the case of key enabling technologies) 

 TRL 7 – system prototype demonstration in operational environment 

 TRL 8 – system complete and qualified 

 TRL 9 – actual system proven in operational environment (competitive 

manufacturing in the case of key enabling technologies or in space) 

  

 
1 TRL Scale in Horizon Europe and ERC - explained - Enspire Science Ltd. 

https://enspire.science/trl-scale-horizon-europe-erc-explained/
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Technology TRL Benefits Limitations Applications Area of Use Challenges 

Quantum 
Computing (QC) 

0 – 62  Solving bigger, more complex 
problems 

 Handling more data 

 High energy efficiency 

 Limited stability 

 Not a universal 
computer 

 No universal 
advantage 

 Optimization 

 Forecasting, 
scenario modelling 

 Chemical 
simulation 

 Cloud 

 On-premises 

 Edge 

 Hardware scaling 

 Identifying business-
relevant problems 

 Integration with classical 
computing 

 Quantum storage 

Neuromorphic 

Computing 

2 – 73  High energy efficiency 

 High processing speed  

 Robustness  

 Not efficiently 
representing numbers 

 Based on incomplete 
approximations of the 
brain 

 Medicine 

 Computer vision 

 Autonomous 
robots and self-
driving cars 

 Edge 

 Cloud 

 Distributing memory among 
multiple processors on a 
chip  

 Scalable messaging and 
interconnect architectures 

 New algorithms, software 
and design tools 

Optical 

Computing 

Analog  
7  Extremely parallelizable 

 Ultra-low power consumption 
and low latency 

 Mature fabrication nodes 

 Power loss during 
electronic-optical 
conversions 

 Deep learning 

 Data encryption 

 Cloud 

 Edge 

 Large area footprint  

 Scaling 

Digital 

4  Intrinsically low light-
light interaction 
hinders operation 

 

 General use  Cloud 

 On-premises 

 Alternative architectures 
needed 

 Chip integration and 
material development  

 Optical memory  

Digital Annealing 

9 (As compared to QC) 

 Full connectivity among bits  

 High precision in problem 
formulation  

 Large problem sizes solvable   

 No special environment 
needed  

 Restricted to 
combinatorial 
optimization problems 

 Close to optimal 
solution, no guarantee 
for the global 
optimum  

 Traffic flow 
optimization 

 Drug design 

 Portfolio 
optimization 

 Production 
planning  

 Cloud 

 On-premises 

 Not every combinatorial 
optimization problem is 
suited  

 Additional resources to 
formulate problems with 
higher order polynomials  

DNA Computing 

3 – 4  Extremely parallelizable 

 High energy efficiency  

 High storage density (for DNA 
storage) 

 Low signal 
propagation speed 
(hours) 

 Weak scaling  

 Propensity for discrete 
problems 

 Combinatorial 
problems, search, 
scheduling, 
clustering 

 Cryptography and 
intrusion detection 

 Cloud  Large-scale parallelization 
to compensate for slow 
signal propagation   

 Lowering the operation 
costs  

 Mapping business problems 

 
2 TRL depends on the physical realization of qubits (highest is for superconducting qubits) 
3 Differs for neuromorphic chips used for inference (TRL 6 – 7) and training (TRL 2 – 4)  
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1 Quantum Computing 

Dr. Jannis Ehrlich (Fraunhofer IWM),  

Dr. Oliver Oberst (IBM), Dr. Christoph  

F. Strnadl (Software AG) 

 

1.1 Short Description 

Quantum computing (QC) is computing based on direct manipulations of quantum 

systems by discretely transforming their respective quantum states4. Instead of bits 

with just the two states »0« or »1«, present in classical computers, quantum 

computers use qubits which can have any state in between. 

 

A quantum computer is a statistical computer which returns the results of a 

(quantum) algorithm according to a certain probability distribution corresponding to 

the quantum state measured. Thus, the same instructions must be run many times to 

obtain a reasonable statistic for the »correct« (intended) result. 

 

Like classical computing, QC comprises hardware, software, and quantum algorithms. 

As of today, many different physical realizations of quantum computers utilizing 

various hardware platforms, including e. g. ion traps, superconducting circuits, neutral 

atom arrays, various solid-state approaches, optical quantum computing etc. The 

question of the most economic quantum computing »hardware« has yet to be 

answered. Technology Readiness Level strongly depends on the qubit realization 

technology, varying between 0 to 6 (7 being the demonstration of »quantum 

advantage«).  

 

1.2 Benefits 

Quantum computing offers the promise of identifying and executing suitable 

(quantum) algorithms with significantly better scaling in problem size than classical 

computers. This allows computations on much more data and the solution to 

problems that are out of reach for classical computers.  

 

Furthermore, some quantum algorithms may provide a significant (polynomial or, in 

cases, even exponential) speed-up over conventional algorithms (i. e., dramatically 

reduced execution times). This feature of QC will widen the problem space towards 

more complex and longer-lasting algorithms including more data, larger systems, finer 

resolution, and better accuracy. Besides, being »green« by physical principles quantum 

computing offers the potential for significant energy savings compared to classical 

computing. 

 

 
4 adapted after N.D. Mermin 2007, Quantum Computer Science. 
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1.3 Limitations 

 Quantum computing does not extend the limits of computability: It cannot 

compute what classical computers cannot – albeit much slower – compute.  

 Limited stability: Quantum computers easily interact with their environment in 

uncontrollable ways, which can alter or destroy the quantum state and the 

information stored in it. 

 Not a universal computer: While quantum computers can outperform classical 

computers in certain types of computations, classical computers may still be better 

suited for many tasks. 

 No universal quantum advantage exists: While quantum computers have the 

potential to provide significant speedups for certain types of problems, this 

advantage does not apply to all conceivable algorithms or problems. 

 

1.4 Application and Use Cases  

 Optimization: financial analysis, portfolio optimization, traffic routing, logistics, 

resource management5 

 Forecasting and scenario modelling: risk, weather, traffic patterns, scenarios such as 

the impact of natural disasters or spread of a virus in a population6 

 Simulation: atomistic simulations of materials and dynamics of chemical reactions 

(materials science, drug discovery) 

 Further special algorithms: quantum machine learning7, quantum AI, quantum 

multi-agent systems, quantum chemistry, high energy physics 

 Cryptography: factoring large numbers for breaking RSA encryption 

 

1.5 Physical Area of Use 

 Cloud: Most organizations will use services offered by third-party providers 

accessed over the public Internet.  

 On-premises: Option for organizations with dedicated capabilities, specialized 

requirements and sufficient financial resources (research centers, universities, 

military and defense, public administration, banks). 

 Edge (Mobile) approaches are developed allowing for smaller quantum computing 

systems to be administered with reasonable effort. 

 

 

 

 
5 Example: Industry Quantum Computing Applications QUTAC Application Group 
6 Example: Forecasting financial crashes with quantum computing. R. Orus, S. Mugel, E. Lizaso 
7 Example: Supervised learning with quantum enhanced feature spaces, Havlíček, V., Córcoles, A.D., Temme, 

K. et al.  

https://www.qutac.de/wp-content/uploads/2021/06/QUTAC_Paper.pdf
https://arxiv.org/abs/1810.07690
https://arxiv.org/abs/1804.11326
https://arxiv.org/abs/1804.11326
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1.6 Development Challenges 

 Hardware scaling: Even though typical quantum algorithms only need a small 

number of logical qubits; current QC technologies require a factor of thousand 

more physical qubits to form a single logical one. 

 Lack of business-relevant quantum computing algorithms: The prime challenge is 

to identify quantum algorithms that solve real business problems more efficiently 

than classical ones.  

 Efficient integration and communication of quantum and classical computing is 

crucial, as most quantum algorithms only speed up specific steps in a larger 

classical algorithm. 

 Quantum computers cannot really »store« information: Qubits' physical properties 

limit their ability to store data beyond the computation process, which restricts the 

size and complexity of problems solvable with quantum computers. 

 

 

 

2 Neuromorphic Computing 

Dr. Johannes Leugering (Fraunhofer IIS), Bert 

Klöppel (T-Systems), Ferdinand Pscheidl 

(Fraunhofer EMFT), Villads Pors Schjelde 

(Infineon Technologies AG), Dr. Mira Wolf-

Bauwens (IBM) 

 

2.1 Short Description 

Neuromorphic Computing is a multidisciplinary field that aims to build sensors, 

processors, and algorithms based on principles observed in neurobiology. It involves 

designing systems that mimic the morphology of biological neural systems, featuring 

many simple processing elements that run concurrently and communicate via point-

to-point connections instead of shared memory. The field aims to bring power 

efficiency and low latency to machine learning tasks like image classification and voice 

detection by adopting some of the characteristics of the human brain, implemented 

using analog, mixed-signal or asynchronous digital circuits. While the neuromorphic 

computing field is still dominated by academic research, several start-ups and research 

divisions of larger companies have demonstrated prototypes and first products in 

recent years. 
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2.2 Benefits 

 Higher energy efficiency to a factor between 4 and 16 compared to semiconductor 

technology8 

 Execution speed 

 Robustness against noise, local failures, and device variability  

 Enhancing efficiency and enabling growth of network size for DNN applications. 

 

2.3 Limitations  

 For neuromorphic computing with spiking neural networks spike-rates are an 

inefficient way of representing numbers. This makes a direct conversion of deep 

neural networks inefficient. More efficient approaches are an active area of 

research but currently both software support and competitive network 

architectures are still missing. Therefore, neuromorphic chips are currently not 

competitive for many tasks that are done well by conventional computers9.  

 Neuromorphic computing is motivated by our current, incomplete understanding of 

the brain, which may not capture critical aspects of cognition such as the role of 

neurotransmitters and hormones, different neuron morphologies and cell types, 

and specific neural circuits. If cognition relies on these phenomena, current 

neuromorphic computing approaches might result in too incomplete 

approximations to be of practical use. 

 

2.4 Applications and Use Cases 

 Medicine: Neuromorphic computing's compatibility with organic materials and 

ability to receive or respond to environmental data has potential applications in 

improving drug delivery systems and enhancing prosthetics. 

 Computer vision10: Neuromorphic computing can be applied to event-based vision 

sensors that generate images similarly to the human eye. These sensors respond to 

changes in light intensity extremely quickly. This fast response time does no longer 

lead motion blur or delayed response, making them ideal for uses in robot vision 

and virtual and augmented reality technology. 

 Autonomous robots and self-driving cars11: Due to their low energy consumption 

and short reaction times, neuromorphic chips are well-suited for on-board 

processing in self-driving cars, drones, or satellites, i. e. where decisions need to be 

made autonomously and cloud-connectivity and power-budget are limited. In 

addition, neuromorphic chips offer potentially higher reliability in high noise 

environments. These benefits could make autonomous robots and driverless cars 

more economical, safer and more suitable for varying environments. 

 

 
8 Rao, A., Plank, P., Wild, A. et al. A Long Short-Term Memory for AI Applications in Spike-based Neuromorphic 
Hardware. Nat Mach Intell 4, 467–479 (2022).  
9 Are neuromorphic systems the future of high-performance computing? – Physics World 
10 PureSentry contamination detection | Cambridge Consultants 
11 Edge-AI & Neuromorphic – Efficient Processing of Time Series Data for Control & Prediction 

https://doi.org/10.1038/s42256-022-00480-w
https://doi.org/10.1038/s42256-022-00480-w
https://physicsworld.com/a/are-neuromorphic-systems-the-future-of-high-performance-computing/
https://www.cambridgeconsultants.com/case-studies/puresentry-contamination-detection
https://www.nanoge.org/proceedings/MatNeC22/61d9e942bd7ce704cc9a07be
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2.5 Physical Area of Use 

 Edge: Neuromorphic chips are particularly well-suited for use on the edge, as they 

can process data more efficiently and quickly with limited cloud-connectivity.  

 Cloud solutions are used for tasks that require more computational power and data 

processing capabilities. 

 

2.6 Development Challenges 

 Being able to distribute large amounts of memory among many processors on a 

single chip: Neuromorphic chips rely on the parallelization of a very large number of 

processes. Therefore, the required data needs to be placed in memory close to these 

processors, which requires new architectures and memory technologies.  

 Developing competitive neural network architectures for neuromorphic devices: 

Neuromorphic computing will have to compete with neural networks deployed on 

conventional hardware. This can only be achieved by finding new algorithms and 

neural network topologies optimized for neuromorphic devices.  

 Developing scalable messaging and interconnect architectures: The parallelization 

of neuromorphic devices also requires a previously unseen amount of 

communication between these processors. Since communication can be highly 

irregular and sparse, completely new interconnect architectures and design tools 

are needed. 

 New algorithms, software and design tools must be developed to incorporate and 

leverage the specifics of neuromorphic circuits. Current hardware is developed to 

optimize performance for current neural network algorithms, which are in turn 

optimized to run well on current hardware. Breaking this cycle requires a large 

effort of hard- and software co-development. 

 

 

 

3 Optical Computing 

Dr. Michael Kissner (Akhetonics) 

 

3.1 Short Description 

Optical Computing promises to remedy some of the problems that plague electronics 

such as power consumption and data bottlenecks. There are two common approaches: 

The digital domain, which aims to replace the standard electronic processor and the 

analog domain, focusing on artificial intelligence (AI) acceleration. There is also an 

optical approach in QC which is out of focus of this section.  
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 Digital: 

By using all-optical transistors as building blocks, any computer architecture can be 

converted to an all-optical processor. This would make computing extremely energy 

efficient and a lot faster. Currently, there are sufficient all-optical transistor 

concepts for which the research phase is completed. These can be used for optical 

digital computing. With switching speeds approaching the Petahertz domain, they 

promise a speed-up compared to current electronic transistors found in modern 

CPUs. Optical digital computing enables the use of current software on a new and 

improved platform. It is the only all-optical approach in optical computing, meaning 

no electronics for data manipulation are needed. The TRL is currently around 4. 

 Analog 

Optical analog computing is used to directly model mathematical functions in the 

optical domain. Using linear optical devices, it is possible to do vector-matrix 

multiplications (VMM) which can be implemented in AI systems. The working 

principle exploits the wave properties of light: By constructively interfering two 

light beams one can »add« them and by attenuating (or dimming) one can 

»multiply« the first result by a constant. Using these two linear operations in 

sequence allows for the famed vector-matrix multiplication. The TRL is currently 

around 7, with the first companies releasing their products. 

 

3.2 Benefits: 

 Extremely parallelizable: Photons do not interact strongly with other photons or 

even some materials. This allows a high degree of parallelization, since it is possible 

to have multiple light beams with different wavelengths doing parallel 

computation without crosstalk.  

 Ultra-low power consumption and low latency: Using almost perfectly transparent 

materials allows for extremely efficient waveguides that act almost like a 

superconductor. 

 130/250 nanometer (nm) fabrication nodes: No leading-edge manufacturing 

processes are required. 

 

3.3 Limitations 

 Digital 

Low light-light interaction: To create an all-optical transistor, two light beams must 

interact with each other. This can only be done using highly specialized materials, 

long interaction lengths or very intense light beams. 

 Analog  

Electronic processing bottleneck: Not many operations that can be performed using 

a completely linear PIC. All modern neural networks also require a non-linear 

activation function. Converting between optical and electronic domains repeatedly 

leads to power and speed losses.  

 

 



Future Computing: Overview of Technological Landscape 

7 

3.4 Applications & Use-Cases  

 Digital 

General Purpose: Use-cases include anything that a regular CPU, GPU or ASIC can 

currently do.  

 Analog  

Application Specific: Linear Mathematical Operations and Fourier Transforms are 

the current main use-cases. 

 Deep learning: VMM is the main computation component in deep learning, so AI 

accelerators mostly use the analog approach. 

 Data encryption: Fourier Transforms enable secure data processing, which has 

thus far been held back by the speed of computation.  

 

3.5 Physical Area of Use 

 Digital: cloud and on-premises 

 Analog: cloud and edge 

 

3.6 Development Challenges 

 Very large footprint of the IC due to low transistor densities, leading to larger 

processors at the moment.  

 Digital 

 Need for alternative architecture approaches: von Neumann architecture is not 

well suited for the optical domain. Alternatives are being explored such as the 

Harvard architecture, the pushdown automata or the finite-state machine. 

 Chip integration of non-linear photonics and the associated material 

development to allow for scaling of the circuits. 

 Optical memory is still not as abundantly available as in electronics.  

 Analog 

 Scaling without sacrificing latency and power and reducing the input/output 

bottleneck introduced by electronics. 
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4 Digital Annealing 

Dr. Stefan Walter (Fujitsu) 

 

4.1 Short Description 

Digital Annealing systems are quantum-inspired special purpose hardware devices, 

designed to solve large combinatorial optimization problems very fast. The problems 

need to be formulated as an Ising model or equivalently as a Quadratic Unconstrained 

Binary Optimization (QUBO). Digital Annealing systems search for the lowest energy 

value of the energy function. In many cases the basis of the search algorithm is a 

Simulating Annealing approach which is enhanced using hardware techniques such as 

GPUs, FPGAs or ASICs, and/or quantum-inspired algorithms. The hardware approaches 

specifically tailored to solve Ising type problems make Digital Annealing systems a 

powerful and competitive computing technology. Digital Annealing is a mature 

technology, proven by actual systems in operational environments. Therefore TRL 9 

can be assigned. Depending on the realization, their power consumption is comparable 

to the CPUs and GPUs. 

 

4.2 Benefits 

The key advantages of Digital Annealing compared to quantum approaches are: 

 Full connectivity among bits allows for solving more complex and more realistic 

problem scenarios without an additional overhead of embedding the problem, i. e. 

all bits can be used to encode the problem. 

 High gradation allows for high precision in the formulation of the combinatorial 

optimization problem. 

 Large problem sizes solvable: Existing annealers can handle between 100 000 bits 

up to 10 million bits using a combination of hardware and software technologies.  

 No special environment needed: Digital Annealer can be implemented in standard 

19-inch rack enclosures used in data centers. No cryogenic or vacuum environment 

is needed. 

 

4.3 Limitations  

 Special purpose: Digital Annealing systems are restricted to solving combinatorial 

optimization problems only. 

 Only close to optimal solution: Digital Annealing systems are based on simulated 

annealing. There is no guarantee for the global optimum of the optimization 

problem. A close to optimal solution obtained in a very short time is, however, often 

sufficient.  
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4.4 Applications and Use-Cases 

 Combinatorial optimization problems: The aim is to find a minimum energy 

solution for a given energy function. Combinatorial optimization problems are very 

complex optimization problems often with a huge number of variables and 

therefore the search space is usually too large to search exhaustively by brute force 

methods.  

 Problem examples include the travelling salesman problem, graph partitioning, 

graph coloring, and Boolean satisfiability problems. These types of problems 

represent a significant number of challenges in many industries e. g.:  

 Mobility: e. g. traffic flow optimization12, scheduling 

 Life science: e. g. drug design 

 Finance: e. g. portfolio optimization, arbitrage optimization 

 Manufacturing: e. g. production planning 13, transport planning, assignment 

problems, warehouse optimization 

 

4.5 Physical Area of Use 

 Cloud: with APIs providing suitable interfaces for access from the public internet.  

 On-premises: in case of special requirements to the solution (such as security issues 

or latency and real time demands) 

 

4.6 Development Challenges 

 Not every combinatorial optimization problem is suited: Every linear optimization 

problem can be cast into QUBO form and can then be solved using a Digital 

Annealing system. Sometimes, however, this approach won’t provide the potential 

speed-up or an increased solution quality. Therefore, it is essential to identify 

business problems benefiting from using a Digital Annealing system. 

 Additional resources (i. e. bits) required for problems using higher order 

polynomials to be cast into QUBO form.  

 
12 MOZART: Traffic management through traffic signal control by Quantum-Inspired (fujitsu.com) 
13 Fujitsu, Toyota Systems leverage Fujitsu’s Quantum-Inspired Digital Annealer to streamline automobile 

production sequence : Fujitsu Global 

https://sp.ts.fujitsu.com/dmsp/Publications/public/ITS-Hamburg-2021-id%20511%20Final-Paper.pdf
https://www.fujitsu.com/global/about/resources/news/press-releases/2022/1021-01.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2022/1021-01.html
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5 DNA Computing 

 Dr. Christoph F. Strnadl (Software AG) 

 

5.1 Short Description  

DNA computing (in the wider sense) is a subset of molecular or chemical computing 

involving DNA, RNA, or highly related molecules. It comprises DNA storage which uses 

the structure of shorter strands of DNA /RNA to store information and DNA computing 

in the narrower sense where typical chemical mechanisms (e. g. complementarity of 

the two strands of RNA/DNA) and machinery (e. g. enzymes) are used to deliberately 

manipulate information stored in DNA/RNA strands. Today, several different 

realizations of DNA computing exist capitalizing on distinct chemical characteristics of 

the DNA/RNA molecules and the substrates they operate in. 

Currently, DNA computing in general is at TRL 3-4 while dedicated implementations of 

DNA storage may already have reached TRL 5. 

 

5.2 Benefits 

 DNA computing parallelizes excellently (1018 DNA strands per one liter of water) at 

an extraordinary energy efficiency - about one billion times more energy efficient 

than current day electronic devices. To the extent that computation (i. e. the 

underlying chemical reactions) occurs inside living cells, biological error-correction 

mechanisms are available (in theory). 

 DNA storage: Besides its incredible storage density (seven orders of magnitude (107) 

more than tape storage and three orders more than flash memory), DNA storage 

excels with a (evolutionary) proven track record as information bearer at longevity, 

durability (up to 1 million years), and energy efficiency (eight orders of magnitude 

(108) better than that of flash memory). 

 

5.3 Limitations  

 DNA computing intrinsically suffers from low signal propagation speed (hours), 

weak scaling and a propensity for discrete problems. 

 DNA storage’s most important limitation is the very high access latency in the order 

of minutes or hours brought about by the physico-chemical laws of nature itself. 

 

5.4 Application Areas 

 DNA computing may be applied to classical problems like combinatorial problems 

(e. g. Travelling Salesperson Problem), search, scheduling or clustering. Algorithms 

have been also formulated in cryptography and intrusion detection. In connection 

with living cells (organism) DNA computing may be used in nanomedicine (bio-
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sensing, intelligent diagnostics of molecular-level conditions). When coupled to 

suitable materials, it may be used for DNA barcoding, product tagging, or even for 

controlling »smart« materials.  

 DNA storage may provide the ultimate long-term highly energy efficient and fully 

biodegradable information storage and archiving solution. 

 

5.5 Physical Area of Use 

 Cloud: Due to the (current) complexity of operating DNA computers including DNA 

storage14, this will most likely result in a cloud computing (SaaS) model. 

 

5.6 Development Challenges 

 Large-scale parallelization: Due to the intrinsically low signal propagation speed of 

chemical reactions DNA computing must be parallelized to an unprecedented 

extent in order to yield acceptable computational throughput technical realization., 

 Lowering the costs: The current cost base for manipulating DNA strands in a lab 

needs to be reduced by a factor of 1 million (e. g. through automatization or better 

error-correction) to make it feasible. 

 Mapping of business problems: Limited computational complexity of the underlying 

(discrete) information structure renders the mapping of business problems onto a 

DNA computing machinery and algorithms quite difficult.  

 Improving DNA storage: Storage will have to scale beyond the currently available 

size (in the order of 100 MB15), to reduce latency and increase write speeds from 

today’s ca. 500 bit/s. 

  

 
14 Today, this means running a state-of-the-art genetic laboratory 
15 1 MB = 1 Megabyte = 1,024 Kilobytes (kB) = 1,048,576 Bytes 
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6 Further computing  

approaches 

Dr. Roman Bansen (Agentur für Innovation in 

der Cybersicherheit), Dr. Christoph F. Strnadl 

(Software AG) 

 

 Smartdust 

Smartdust usually refers to a system of many tiny microelectromechanical devices 

such as sensors or robots. They are operated wirelessly on a computer network and 

are distributed over an area to perform tasks, usually sensing, and communicate via 

radiofrequency16 . There are, however, theoretical concepts for these tiny devices to 

contain a simple processor. Intelligent control could use mesh networking of these 

devices in different ways from those of traditional computer networks. 

 Brain-Computer interface 

Brain-machine interfaces or brain-computer interfaces refer to the direct 

communication between the brain's electrical activity and an external computer. 

While usually used for augmenting or repairing human cognitive or sensory-motor 

functions and technically not a computing approach, it might radically change our 

way to operate and interact with computers in the future17 18 19. 

 Spintronics 

The term spintronics, or spin transport electronics, generally describes any kind of 

application or solid-state device which does not only use the fundamental electric 

charge of electrons but also their intrinsic spin. This adds a further degree of 

freedom to be utilized. Technically, this includes a whole range of already 

commercialized devices like the read heads of magnetic hard drives or magneto- 

resistive RAM and even certain approaches in quantum computing the focus with 

respect to future computing lies on the development of spin-based transistors, 

which could have several potential advantages over classical transistors.  

 Bio-neuronal networks 

In contrast to the artificial neural networks in neuromorphic computing, this 

approach uses biologically real nerve cells (neurons) as an interface to silicon-based 

electronics. Currently, the Australian startup Cortical Labs is looking to 

commercialize this »dishbrain« technology. Similar approaches are being pursued 

by researchers at the University of Texas in Austin20. 

 

 

 
16 Iyer, V., Gaensbauer, H., Daniel, T.L. et al. Wind dispersal of battery-free wireless devices. Nature 603, 427–433 
(2022).  
17 Science & Tech Spotlight: Brain-Computer Interfaces | U.S. GAO 
18 3 Brain-Computer Interface Technology Trends (patsnap.com) 
19 Frontiers | Progress in Brain Computer Interface: Challenges and Opportunities (frontiersin.org) 
20 Kireev, D., Liu, S., Jin, H. et al. Metaplastic and energy-efficient biocompatible graphene artificial synaptic 

transistors for enhanced accuracy neuromorphic computing. Nat Commun 13, 4386 (2022).  

https://doi.org/10.1038/s41586-021-04363-9
https://doi.org/10.1038/s41586-021-04363-9
https://www.gao.gov/products/gao-22-106118
https://www.patsnap.com/3-brain-computer-interface-technology-trends
https://www.frontiersin.org/articles/10.3389/fnsys.2021.578875/full
https://doi.org/10.1038/s41467-022-32078-6
https://doi.org/10.1038/s41467-022-32078-6
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 Approximate computing 

The umbrella term »approximate computing« includes several different 

computation techniques that – in contrast to a classical computer – return possibly 

inaccurate results. They could be used for any kind of application where an 

approximate result is sufficient for its purpose. In many non-critical scenarios, 

approximation within certain boundaries could provide significant gains in 

performance and energy, while still achieving acceptable result accuracy. 

Approaches and strategies for approximate computing include, amongst others, the 

use of approximate arithmetic circuits, approximate storage and memory or 

software-level approximation21, 22. 

 Associative machine 

An associative machine is a freely programmable machine composed of associative 

memories. In contrast to a classical Von Neumann processor, an associative 

machine is not built around an arithmetic logic unit but consists of associative 

units. Usually, associative matrices are used as associative memories. This way, the 

associative machine acquires properties of fault tolerance, which makes it 

particularly interesting for pattern recognition, completion and extraction. 

Associative machines require completely different programming paradigms, called 

associative programming, where a program line is associated with its successor and 

data can be queried in a fault-tolerant manner23, 24. 

 In-memory computing (IMC) / In-memory processing (IMP) / Processing in 

memory (PIM) 

In today's widespread Von Neumann computing architecture, the memory interface 

is a major hurdle for overall processing speed, slowing down many calculations. The 

IMC architecture eliminates the detour via the processor's main memory: 

Processing and storage of data takes place on the same chip. As stored data is 

accessed much more quickly when it is placed in RAM or flash memory, in-memory 

processing allows data to be analyzed much faster. Moreover, complex algorithms 

can potentially be processed with significantly lower power consumption. In-

memory computing is sometimes also classified as a neuromorphic computing 

approach. The way it functions and the combination of fast computing power and 

low energy consumption make IMC particularly interesting for AI applications25. 

 Field Programmable Gate Array (FPGA) 

An FPGA is an integrated circuit consisting of (i) input/output blocks and (ii) user-

configurable logic blocks, which are linked together via (iii) programmable 

interconnections. Therefore, engineers can configure FPGAs according to desired 

requirements after they have been manufactured and deployed (hence, field 

programmable, contrary to ASICs – application specific ICs).26 Despite their size, cost 

and power disadvantages compared to ASICs, they are used for hardware 

acceleration (e. g. encryption, video format conversions, AI/ML algorithms) or to 

enhance security in heterogeneous and/or changing environments where the 

deployment of classical ICs (CPUs, GPUs) or ASICs no longer is cost-effective. 

 
21 W. Liu, F. Lombardi and M. Schulte, "Approximate Computing: From Circuits to Applications [Scanning the 
Issue]," in Proceedings of the IEEE, vol. 108, no. 12, pp. 2103-2107, Dec. 2020 
22 Approximate Computing | SpringerLink 
23 assoziativmaschine.de 
24 Assoziativcomputer: Hildesheimer Grüße an die NSA - Digital - FAZ 
25 S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna and O. Mutlu, "Processing-in-memory: A workload-driven 
perspective," in IBM Journal of Research and Development, vol. 63, no. 6, pp. 3:1-3:19, 1 Nov.-Dec. 2019  
26 Michael Mattioli. 2022. FPGAs in Client Compute Hardware: Despite certain challenges, FPGAs provide 
security and performance benefits over ASICs. 

https://ieeexplore.ieee.org/document/9264836
https://ieeexplore.ieee.org/document/9264836
https://link.springer.com/book/10.1007/978-3-030-98347-5
http://www.assoziativmaschine.de/index2.html
https://www.faz.net/aktuell/technik-motor/digital/assoziativcomputer-hildesheimer-gruesse-an-die-nsa-12923081.html
https://ieeexplore.ieee.org/abstract/document/8792187
https://ieeexplore.ieee.org/abstract/document/8792187
https://doi.org/10.1145/3512327
https://doi.org/10.1145/3512327
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7 Further Reading 

 

Quantum Computing 

 WEF insight Report »State of Quantum Computing: Building a Quantum Economy«  

 Leitfaden »Quantentechnologien in Unternehmen«  

 Quantum Computing White Paper (Software AG) 

 Industry Quantum Computing Applications, QUTAC Application Group 

 

Neuromorphic Computing 

 The Femtojoule Promise of Analog AI - IEEE Spectrum 

 J. Leugering, »Neuromorphe Hardware – Hardware für neuronale Netze«, DESIGN & 

ELEKTRONIK, 7/2020 

 

Optical Computing 

 Pierre Ambs, »Optical Computing: A 60-Year Adventure«, Advances in Optical 

Technologies, vol. 2010, Article ID 372652, 15 pages, 2010.  

 Miller, D. Are optical transistors the logical next step?. Nature Photon 4, 3–5 (2010) 

 

Digital Annealing  

 Mohseni, N., McMahon, P.L. & Byrnes, T. Ising machines as hardware solvers of 

combinatorial optimization problems. Nat Rev Phys 4, 363–379 (2022).  

 Kochenberger, G., Hao, JK., Glover, F. et al. The unconstrained binary quadratic 

programming problem: a survey. J Comb Optim 28, 58–81 (2014).  

 

DNA Computing 

 Katz E (2020): DNA Computing: Origination, Motivation, and Goals – Illustrated 

Introduction 

 Meiser, Linda C., et al. »Synthetic DNA applications in information technology.« 

Nature Communications 13.1 (2022): 1-13.  

https://www3.weforum.org/docs/WEF_State_of_Quantum_Computing_2022.pdf
https://www.bitkom.org/Bitkom/Publikationen/Quantentechnologien-in-Unternehmen
https://www.softwareag.com/content/dam/softwareag/global/marketing-material/en/whitepaper/corporate/wp-quantum-computing-en.pdf.sagdownload.inline.pdf
https://www.qutac.de/wp-content/uploads/2021/06/QUTAC_Paper.pdf
https://spectrum.ieee.org/analog-ai
https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ks/bb/Design&Elektronik_07-2020_Neuromorphe-Hardware.pdf
https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ks/bb/Design&Elektronik_07-2020_Neuromorphe-Hardware.pdf
https://doi.org/10.1155/2010/372652
https://doi.org/10.1155/2010/372652
https://ee.stanford.edu/~dabm/379.pdf
https://doi.org/10.1038/s42254-022-00440-8
https://doi.org/10.1038/s42254-022-00440-8
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/s10878-014-9734-0
https://www.nature.com/articles/s41467-021-27846-9%20(
https://www.nature.com/articles/s41467-021-27846-9%20(
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